Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ from PIL import Image, ImageDraw
|
|
7 |
processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
8 |
model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
9 |
|
10 |
-
def detect_objects(image):
|
11 |
# Convert image to RGB if it's grayscale
|
12 |
if image.mode != "RGB":
|
13 |
image = image.convert("RGB")
|
@@ -16,7 +16,7 @@ def detect_objects(image):
|
|
16 |
inputs = processor(images=image, return_tensors="pt")
|
17 |
outputs = model(**inputs)
|
18 |
|
19 |
-
# Filter predictions
|
20 |
target_sizes = torch.tensor([image.size[::-1]])
|
21 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
|
22 |
|
@@ -28,17 +28,18 @@ def detect_objects(image):
|
|
28 |
boxes = result["boxes"]
|
29 |
|
30 |
for score, label, box in zip(scores, labels, boxes):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
return image
|
37 |
|
38 |
# Create the Gradio interface
|
39 |
interface = gr.Interface(
|
40 |
fn=detect_objects,
|
41 |
-
inputs=gr.Image(type="pil"),
|
42 |
outputs=gr.Image(type="pil"), # Corrected output type
|
43 |
title="Object Detection with Transformers",
|
44 |
description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
|
|
|
7 |
processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
8 |
model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
9 |
|
10 |
+
def detect_objects(image, score_threshold):
|
11 |
# Convert image to RGB if it's grayscale
|
12 |
if image.mode != "RGB":
|
13 |
image = image.convert("RGB")
|
|
|
16 |
inputs = processor(images=image, return_tensors="pt")
|
17 |
outputs = model(**inputs)
|
18 |
|
19 |
+
# Filter predictions based on the user-defined score threshold
|
20 |
target_sizes = torch.tensor([image.size[::-1]])
|
21 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
|
22 |
|
|
|
28 |
boxes = result["boxes"]
|
29 |
|
30 |
for score, label, box in zip(scores, labels, boxes):
|
31 |
+
if score >= score_threshold: # Only draw if score is above threshold
|
32 |
+
box = [round(i, 2) for i in box.tolist()]
|
33 |
+
label_name = "Pneumonia" if label.item() == 0 else "Other"
|
34 |
+
draw.rectangle(box, outline="red", width=3)
|
35 |
+
draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
|
36 |
|
37 |
return image
|
38 |
|
39 |
# Create the Gradio interface
|
40 |
interface = gr.Interface(
|
41 |
fn=detect_objects,
|
42 |
+
inputs=[gr.Image(type="pil"), gr.Slider(0, 1, value=0.5, label="Score Threshold")], # Add slider for score threshold
|
43 |
outputs=gr.Image(type="pil"), # Corrected output type
|
44 |
title="Object Detection with Transformers",
|
45 |
description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
|