0llheaven commited on
Commit
7fb2430
·
verified ·
1 Parent(s): 277563c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -2
app.py CHANGED
@@ -20,6 +20,8 @@ def detect_objects(image, score_threshold):
20
  target_sizes = torch.tensor([image.size[::-1]])
21
  results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
22
 
 
 
23
  # Draw bounding boxes around detected objects
24
  draw = ImageDraw.Draw(image)
25
  for result in results:
@@ -33,14 +35,16 @@ def detect_objects(image, score_threshold):
33
  label_name = "Pneumonia" if label.item() == 0 else "Other"
34
  draw.rectangle(box, outline="red", width=3)
35
  draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
 
36
 
37
- return image
38
 
39
  # Create the Gradio interface
40
  interface = gr.Interface(
41
  fn=detect_objects,
42
  inputs=[gr.Image(type="pil"), gr.Slider(0, 1, value=0.5, label="Score Threshold")], # Add slider for score threshold
43
- outputs=gr.Image(type="pil"), # Corrected output type
 
44
  title="Object Detection with Transformers",
45
  description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
46
  )
 
20
  target_sizes = torch.tensor([image.size[::-1]])
21
  results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
22
 
23
+ labels_output = []
24
+
25
  # Draw bounding boxes around detected objects
26
  draw = ImageDraw.Draw(image)
27
  for result in results:
 
35
  label_name = "Pneumonia" if label.item() == 0 else "Other"
36
  draw.rectangle(box, outline="red", width=3)
37
  draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
38
+ labels_output.append(f"{label_name}: {round(score.item(), 3)}")
39
 
40
+ return image, "\n".join(labels_output)
41
 
42
  # Create the Gradio interface
43
  interface = gr.Interface(
44
  fn=detect_objects,
45
  inputs=[gr.Image(type="pil"), gr.Slider(0, 1, value=0.5, label="Score Threshold")], # Add slider for score threshold
46
+ # outputs=gr.Image(type="pil"), # Corrected output type
47
+ outputs=[gr.Image(type="pil"), gr.Textbox(label="Detected Objects")],
48
  title="Object Detection with Transformers",
49
  description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
50
  )