Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,517 Bytes
9a7a252 6f708fa 54fdda4 9cb2a58 936607f 6f708fa 9cb2a58 6f708fa 9a7a252 2662f4d 31b8b5e cdce176 2662f4d ddd7baa f351911 ddd7baa f351911 ddd7baa 9cb2a58 f351911 c261e86 981a12e 2662f4d 9c98320 5f20534 9c98320 5f20534 2662f4d 31b8b5e 83d0be8 2662f4d 83d0be8 cdce176 2662f4d cdce176 2662f4d cdce176 2662f4d cdce176 2662f4d cdce176 2662f4d cdce176 2662f4d cdce176 2662f4d f1a0bd5 f351911 596417c c73f1c7 2662f4d b63b0f3 d23e956 09f419b 2662f4d 104c1eb 2662f4d 104c1eb 2662f4d 104c1eb 2662f4d c261e86 fff9530 2662f4d 9a7a252 2662f4d 104c1eb c261e86 104c1eb 2662f4d 5f20534 9c98320 f351911 104c1eb 2662f4d 9c98320 6a35169 2662f4d 9c98320 2662f4d 38ea7b1 2662f4d 5726d72 2662f4d 5726d72 2662f4d 9c98320 6a35169 2662f4d 9c98320 2662f4d 38ea7b1 2662f4d 5726d72 2662f4d 5726d72 2662f4d f351911 2662f4d 9c98320 2662f4d 9c98320 2662f4d 38ea7b1 2662f4d 5726d72 2662f4d 5726d72 2662f4d c261e86 2662f4d f351911 2662f4d 47667c4 2662f4d f351911 2662f4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import subprocess
subprocess.run(['sh', './spaces.sh'])
import os
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
alloc_conf_parts = [
'expandable_segments:True',
'pinned_use_background_threads:True' # Specific to pinned memory.
]
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
import spaces
import gradio as gr
import numpy as np
import random
import torch
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from transformers import CLIPTextModelWithProjection, T5EncoderModel
from transformers import CLIPTokenizer, T5TokenizerFast
import re
import paramiko
import urllib
import time
from image_gen_aux import UpscaleWithModel
from huggingface_hub import hf_hub_download
import datetime
import cyper
from PIL import Image
#from accelerate import Accelerator
#accelerator = Accelerator(mixed_precision="bf16")
hftoken = os.getenv("HF_AUTH_TOKEN")
code = r'''
import torch
import paramiko
import os
import socket
import threading # NEW IMPORT
import queue # NEW IMPORT
FTP_HOST = 'noahcohn.com'
FTP_USER = 'ford442'
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = 'img.noahcohn.com/stablediff/'
FTP_HOST_FALLBACK = '1ink.us'
FTP_DIR_FALLBACK = 'img.1ink.us/stablediff/'
# --- WORKER FUNCTION FOR THREADING ---
# This function contains the logic to connect to a single host.
# It will be executed by each of our threads.
def connect_worker(host, result_queue):
"""Tries to connect to a single host and puts the successful transport object into the queue."""
transport = None
try:
transport = paramiko.Transport((host, 22))
# We still use the 5-second timeout for the handshake
transport.start_client(timeout=5)
transport.auth_password(username=FTP_USER, password=FTP_PASS)
# If we reach here, the connection was successful.
# Put the result in the queue for the main thread to use.
print(f"✅ Connection to {host} succeeded first.")
result_queue.put(transport)
except (paramiko.SSHException, socket.timeout, EOFError) as e:
# This is an expected failure, just print a note.
print(f"ℹ️ Connection to {host} failed or was too slow: {e}")
if transport:
transport.close()
except Exception as e:
# Handle any other unexpected errors.
print(f"❌ Unexpected error connecting to {host}: {e}")
if transport:
transport.close()
def upload_to_ftp(filename):
"""
Attempts to connect to two FTP hosts simultaneously and uses the first one that responds.
It now uses a corresponding directory for the primary and fallback hosts.
"""
hosts = [FTP_HOST]
if FTP_HOST_FALLBACK:
hosts.append(FTP_HOST_FALLBACK)
result_queue = queue.Queue()
threads = []
print(f"--> Racing connections to {hosts} for uploading {filename}...")
for host in hosts:
thread = threading.Thread(target=connect_worker, args=(host, result_queue))
thread.daemon = True
thread.start()
threads.append(thread)
try:
winning_transport = result_queue.get(timeout=7)
# --- THIS IS THE NEW LOGIC ---
# 1. Determine which host won the race.
winning_host = winning_transport.getpeername()[0]
# 2. Select the correct destination directory based on the winning host.
# If the fallback directory isn't specified, it safely defaults to the primary directory.
if winning_host == FTP_HOST:
destination_directory = FTP_DIR
else:
destination_directory = FTP_DIR_FALLBACK if FTP_DIR_FALLBACK else FTP_DIR
print(f"--> Proceeding with upload to {winning_host} in directory {destination_directory}...")
# 3. Construct the full destination path using the selected directory.
sftp = paramiko.SFTPClient.from_transport(winning_transport)
destination_path = os.path.join(destination_directory, os.path.basename(filename))
sftp.put(filename, destination_path)
print(f"✅ Successfully uploaded {filename}.")
sftp.close()
winning_transport.close()
except queue.Empty:
print("❌ Critical Error: Neither FTP host responded in time.")
except Exception as e:
print(f"❌ An unexpected error occurred during SFTP operation: {e}")
'''
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
pipe = StableDiffusion3Pipeline.from_pretrained(
#"stabilityai # stable-diffusion-3.5-large",
"ford442/stable-diffusion-3.5-large-bf16",
trust_remote_code=True,
#vae=None,
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
#text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
#text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
#text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
transformer=None,
#tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
#torch_dtype=torch.bfloat16,
use_safetensors=True,
)
#text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
#text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
#text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
pipe.transformer=ll_transformer
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
#pipe.to(accelerator.device)
pipe.to(device=device, dtype=torch.bfloat16)
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cuda'))
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
@spaces.GPU(duration=70)
def infer_60(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd35ll_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35ll_upscale_{timestamp}.png"
downscale.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
@spaces.GPU(duration=100)
def infer_90(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd35ll_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35ll_upscale_{timestamp}.png"
downscale.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
@spaces.GPU(duration=120)
def infer_110(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd35ll_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35ll_upscale_{timestamp}.png"
downscale.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) # Add this line
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_60 = gr.Button("Run 60", scale=0, variant="primary")
run_button_90 = gr.Button("Run 90", scale=0, variant="primary")
run_button_110 = gr.Button("Run 110", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt_1 = gr.Text(
label="Negative prompt 1",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a second negative prompt",
visible=True,
value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)"
)
negative_prompt_3 = gr.Text(
label="Negative prompt 3",
max_lines=1,
placeholder="Enter a third negative prompt",
visible=True,
value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)"
)
num_iterations = gr.Number(
value=1000,
label="Number of Iterations")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=30.0,
step=0.1,
value=4.2,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=500,
step=1,
value=100,
)
gr.on(
triggers=[run_button_60.click, prompt.submit],
fn=infer_60,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_90.click, prompt.submit],
fn=infer_90,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_110.click, prompt.submit],
fn=infer_110,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch() |