File size: 22,786 Bytes
859e4b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import os
os.system('pip install numpy pillow opencv-python fastapi starlette uvicorn requests')
import gradio as gr
import shutil
import cv2
import numpy as np
from PIL import Image
import asyncio
from concurrent.futures import ThreadPoolExecutor, as_completed
from gradio_client import Client
from fastapi import FastAPI, Request
from fastapi.staticfiles import StaticFiles
from starlette.responses import Response
import uvicorn
import requests
from urllib.parse import quote
from unicodedata import normalize

root = os.path.dirname(os.path.abspath(__file__))
textures_folder = os.path.join(root, 'textures')
os.makedirs(textures_folder, exist_ok=True)
valid_extensions = ['.jpeg', '.jpg', '.png']



textures_repo = "https://huggingface.co/datasets/2ch/textures/resolve/main/"
textures_for_download = [
f"{textures_repo}гауссовский_шум_и_мелкое_зерно.png?download=true",
f"{textures_repo}грязная_матрица.png?download=true",
f"{textures_repo}для_ночных_и_тёмных_кадров_сильный_шум_и_пыль.png?download=true",
f"{textures_repo}для_ночных_и_тёмных_кадров_царапины_шум_пыль_дымка.png?download=true",
f"{textures_repo}для_светлых_и_солнечных_ярких_фото_мелкое_констрастное_зерно.png?download=true",
f"{textures_repo}зернистость_плёнки.png?download=true",
f"{textures_repo}зернистость_плёнки_с_грязью.png?download=true",
f"{textures_repo}испорченная_ворсом_плёнка.png?download=true",
f"{textures_repo}мелкий_цветной_шум.png?download=true",
f"{textures_repo}мелкое_контрастное_зерно_и_средний_цветвой_шум.png?download=true",
f"{textures_repo}очень_мелкое_зерно.png?download=true",
f"{textures_repo}пыльная_плёнка.png?download=true",
f"{textures_repo}сильный_цветовой_шум_для_ночных_фото.png?download=true",
f"{textures_repo}слабый_естественный_шум_матрицы_смартфона.png?download=true",
f"{textures_repo}среднее_зерно.png?download=true",
f"{textures_repo}среднее_монохромное_зерно_пыль_и_ворсинки.png?download=true",
f"{textures_repo}средний_цветной_шум.png?download=true",
f"{textures_repo}старая_матрица.png?download=true",
f"{textures_repo}старая_потёртая_плёнка.png?download=true",
f"{textures_repo}цветной_шум_матрицы.png?download=true",
f"{textures_repo}цветной_шум_на_плёнке.png?download=true",
f"{textures_repo}шумная_матрица.png?download=true",
    ]


def dl_textures(texture_url):
    texture_for_download = quote(normalize('NFD', texture_url), safe='/?:=')
    filename = texture_url.split('/')[-1].split('?')[0]
    file_path = os.path.join(textures_folder, filename)
    response = requests.get(texture_for_download, stream=True)
    response.raise_for_status()
    with open(file_path, 'wb') as f:
        for chunk in response.iter_content(chunk_size=8192):
            f.write(chunk)


def create_texture_preview(texture_folder, output_folder, size=(246, 246)):
    os.makedirs(output_folder, exist_ok=True)
    for texture in os.listdir(texture_folder):
        img_path = os.path.join(texture_folder, texture)
        img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
        start_x = np.random.randint(0, img.shape[1] - size[1])
        start_y = np.random.randint(0, img.shape[0] - size[0])
        img = img[start_y:start_y + size[0], start_x:start_x + size[1]]
        cv2.imwrite(os.path.join(output_folder, texture), img)


def prepare_textures(texture_folder, output_folder):
    with ThreadPoolExecutor(max_workers=len(textures_for_download)) as executor:
        futures = [executor.submit(dl_textures, texture_for_download) for texture_for_download in
                   textures_for_download]
        for future in as_completed(futures):
            future.result()

    create_texture_preview(texture_folder, output_folder, size=(246, 246))


prepare_textures(textures_folder, os.path.join(root, 'preview'))



preview_css = ""
for i, texture in enumerate(os.listdir(textures_folder), start=1):
    if os.path.splitext(texture)[1].lower() in valid_extensions:
        preview_css += f"""[data-testid="{i:02d}-radio-label"]::before {{
          background-color: transparent !important;
          background-image: url("./preview/{texture}") !important;
        }}\n"""

radio_css = """
html,
body {
    background: var(--body-background-fill);
}

.gradio-container {
    max-width: 1396px !important;
}

#textures label {
    position: relative;
    width: 256px;
    height: 256px;
    display: flex;
    flex-direction: row;
    align-items: flex-end;
    background: none !important;
    padding: 4px !important;
    transition: .3s;
}

#textures label::before {
    width: 246px;
    height: 246px;
    border-radius: 8px;
    display: block;
    content: "";
    transition: .3s;
    background: red;
    position: relative;
    top: 0px;
}

#textures label:hover::before,
#textures label:active::before,
#textures label.selected::before {
    mix-blend-mode: soft-light;
    transition: .3s
}

#textures span:not([data-testid="block-info"]),
#textures input {
    position: absolute;
    z-index: 999;
}

#textures input {
    position: absolute;
    z-index: 999;
    bottom: 9px;
    left: 9px;
}

#textures span:not([data-testid="block-info"]) {
    left: 21px;
    padding: 2px 8px;
    background: rgba(0, 0, 0, .57);
    backdrop-filter: blur(3px)
}

#textures {
    background-color: hsla(0, 0%, 50%, 1);
}

.built-with,
.show-api,
footer .svelte-mpyp5e {
    display: none !important;
}

footer:after {
    content: "ну пролапс, ну и что?";
}

#zoom {
    position: absolute;
    top: 50%;
    left: 50%;
    width: 250px;
    height: 250px;
    background-repeat: no-repeat;
    box-shadow: 0px 0px 10px 5px rgba(0, 0, 0, .2);
    border-radius: 50%;
    cursor: none;
    pointer-events: none;
    z-index: 999;
    opacity: 0;
    transform: scale(0);
    transition: opacity 500ms, transform 500ms;
}

#textures_tab .image-button {
    cursor: none;
}

#textured_result-download-link,
#restored_image-download-link {
    position: absolute;
    z-index: 9999;
    padding: 2px 4px;
    margin: 0 7px;
    background: black;
    bottom: 0;
    right: 0;
    font-size: 20px;
    transition: 300ms
}

#download-link:hover {
    color: #99f7a8
}

#restored_images.disabled {
    height: 0px !important;
    opacity: 0;
    transition: 300ms
}

#restored_images.enabled {
    transition: 300ms
}
""" + preview_css

custom_js = """
const PageLoadObserver = new MutationObserver((mutationsList, observer) => {
    for (let mutation of mutationsList) {
        if (mutation.type === 'childList') {
            const tabsDiv = document.querySelector('div.tab-nav');
            if (tabsDiv) {
                observer.disconnect();
                document.querySelector('#textures_tab-button').addEventListener('click', () => {
                    setTimeout(() => {
                        let labels = document.querySelectorAll('label[data-testid]');
                        labels.forEach((label) => {
                            let input = label.querySelector('input[type="radio"]');
                            if (input) {
                                let title = input.value.split('.')[0].replace(/_/g, ' ');
                                label.title = title;
                            }
                        });
                        document.querySelector("label[data-testid='05-radio-label']").click()
                    }, 150);
                })
                let RestoredGallery = document.getElementById('restored_images');
                function checkImagesAndSetClass() {
                    const firstDiv = RestoredGallery.querySelector('div:first-child');
                    const hasChildElements = firstDiv && firstDiv.children.length > 0;
                    const hasImages = RestoredGallery.querySelectorAll('img').length > 0;
                    if (hasChildElements || hasImages) {
                        RestoredGallery.classList.add('enabled');
                        RestoredGallery.classList.remove('disabled');
                    } else {
                        RestoredGallery.classList.add('disabled');
                        RestoredGallery.classList.remove('enabled');
                    }
                }
                const FaceResoreResultCheck = new MutationObserver((mutations) => {
                checkImagesAndSetClass();
                });
                FaceResoreResultCheck.observe(RestoredGallery, {childList: true, subtree: true});
                checkImagesAndSetClass();
                function magnify(imgID, zoom) {
                    var img, glass, w, h, bw;
                    img = document.querySelector(imgID);
                    glass = document.createElement("DIV");
                    glass.setAttribute("id", "zoom");
                    img.parentElement.insertBefore(glass, img);
                    glass.style.backgroundImage = "url('" + img.src + "')";
                    glass.style.backgroundRepeat = "no-repeat";
                    glass.style.backgroundSize = (img.width * zoom) + "px " + (img.height * zoom) + "px";
                    bw = 3;
                    w = glass.offsetWidth / 2;
                    h = glass.offsetHeight / 2;
                    glass.addEventListener("mousemove", moveMagnifier);
                    img.addEventListener("mousemove", moveMagnifier);
                    glass.addEventListener("touchmove", moveMagnifier);
                    img.addEventListener("touchmove", moveMagnifier);
                    function moveMagnifier(e) {
                        var pos, x, y;
                        e.preventDefault();
                        pos = getCursorPos(e);
                        x = pos.x;
                        y = pos.y;
                        if (x > img.width - (w / zoom)) { x = img.width - (w / zoom); }
                        if (x < w / zoom) { x = w / zoom; }
                        if (y > img.height - (h / zoom)) { y = img.height - (h / zoom); }
                        if (y < h / zoom) { y = h / zoom; }
                        glass.style.left = (x - w) + "px";
                        glass.style.top = (y - h) + "px";
                        glass.style.backgroundPosition = "-" + ((x * zoom) - w + bw) + "px -" + ((y * zoom) - h) + "px";
                        glass.style.backgroundImage = "url('" + img.src + "')";
                    }
                    function getCursorPos(e) {
                        var a, x = 0, y = 0;
                        e = e || window.event;
                        a = img.getBoundingClientRect();
                        x = e.pageX - a.left;
                        y = e.pageY - a.top;
                        x = x - window.scrollX;
                        y = y - window.scrollY;
                        return { x: x, y: y };
                    }

                    img.addEventListener("mouseover", function () {

                        glass.style.opacity = "1";
                        glass.style.transform = "scale(1)";
                    });
                    img.addEventListener("mouseout", function () {
                        glass.style.opacity = "0";
                        glass.style.transform = "scale(0)";
                    });
                }
                function setupDownloadLink(imgSelector, linkSelector, linkId, magnifyImage) {
                    const imgElement = document.querySelector(imgSelector);
                    if (imgElement && imgElement.src) {
                      let downloadLink = document.querySelector(linkSelector);
                      if (!downloadLink) {
                        if (magnifyImage) {
                          magnify(magnifyImage, 3);
                        }
                        downloadLink = document.createElement('a');
                        downloadLink.id = linkId;
                        downloadLink.innerText = 'скачать';
                        imgElement.after(downloadLink);
                      }
                      downloadLink.href = imgElement.src;
                      downloadLink.download = '';
                    }
                  }

                  const DownloadLinkObserverCallback = (mutationsList, observer, imgSelector, linkSelector, linkId, magnifyImage) => {
                    setupDownloadLink(imgSelector, linkSelector, linkId, magnifyImage);
                  };

                  const DownloadLinkObserverOptions = { childList: true, subtree: true, attributes: true, attributeFilter: ['src'] };

                  const ImageTexturedObserver = new MutationObserver((mutationsList, observer) => {
                    DownloadLinkObserverCallback(mutationsList, observer, '#textured_result img[data-testid="detailed-image"]', '#textured_result-download-link', 'textured_result-download-link', "#textured_result .image-button img");
                  });

                  ImageTexturedObserver.observe(document, DownloadLinkObserverOptions);

                  const ImageRestoredObserver = new MutationObserver((mutationsList, observer) => {
                    DownloadLinkObserverCallback(mutationsList, observer, '#restored_images img[data-testid="detailed-image"]', '#restored_image-download-link', 'restored_image-download-link');
                  });

                  ImageRestoredObserver.observe(document, DownloadLinkObserverOptions);

            }
        }
    }
});

PageLoadObserver.observe(document, { childList: true, subtree: true });
"""

def extract_path_from_result(predict_answer):
    if isinstance(predict_answer, (tuple, list)):
        result = predict_answer[0]
        shutil.rmtree(os.path.dirname(predict_answer[1]), ignore_errors=True)
    else:
        result = predict_answer
    return result


def restore_face_common(img_path: str, predict_answer: str, model: str) -> None:
    result = extract_path_from_result(predict_answer)
    if os.path.exists(result):
        if os.path.exists(img_path):
            os.unlink(img_path)
        new_file, new_extension = os.path.splitext(result)
        old_file, old_extension = os.path.splitext(img_path)
        old_filename = os.path.basename(old_file)
        new_location = os.path.join(os.path.dirname(img_path), f"{old_filename}_{model}{new_extension}")
        shutil.move(result, new_location)
        shutil.rmtree(os.path.dirname(result), ignore_errors=True)


def restore_face_gfpgan(img_path: str) -> None:
    client = Client(src="https://xintao-gfpgan.hf.space/", verbose=False)
    result = client.predict(img_path, "v1.4", 4, api_name="/predict")
    restore_face_common(img_path, result, "gfpgan")


def restore_face_codeformer(img_path: str) -> None:
    client = Client(src="https://sczhou-codeformer.hf.space/", verbose=False)
    result = client.predict(img_path, True, True, True, 2, 0, api_name="/predict")
    restore_face_common(img_path, result, "codeformer")



async def restore_faces_one_image(img_path: str, func_list: list) -> bool:
    def run_func(func) -> bool:
        for _ in range(3):
            try:
                func(img_path)
                return True
            except Exception as e:
                print(f"ошибка в {func.__name__}: {e}")
        return False

    loop = asyncio.get_event_loop()
    with ThreadPoolExecutor(max_workers=len(func_list)) as executor:
        futures = [loop.run_in_executor(executor, run_func, func) for func in func_list]
    results = await asyncio.gather(*futures)
    return any(results)


async def restore_faces_batch(input_images: list[str], func_list: list, batch_size: int = 3) -> bool:
    results = False
    try:
        batches = [input_images[i:i + batch_size] for i in range(0, len(input_images), batch_size)]
        for batch in batches:
            tasks = [restore_faces_one_image(img_path, func_list) for img_path in batch]
            results = await asyncio.gather(*tasks)
        return any(results)
    except Exception as error:
        print(error)
        return results


def get_file_paths(input_path: str | list[str], extensions_list: list[str]) -> list[str]:
    files = []

    def add_files_from_directory(directory):
        for file_name in os.listdir(directory):
            if os.path.splitext(file_name)[1] in extensions_list:
                files.append(os.path.abspath(os.path.join(directory, file_name)))

    if isinstance(input_path, list):
        for file_path in input_path:
            parent_directory = os.path.dirname(file_path)
            add_files_from_directory(parent_directory)
    else:
        add_files_from_directory(input_path)

    return files


async def restore_upscale(files, restore_method):
    file_paths = [file.name for file in files]
    if restore_method == 'codeformer':
        func_list = [restore_face_codeformer]
    elif restore_method == 'gfpgan':
        func_list = [restore_face_gfpgan]
    else:
        func_list = [restore_face_codeformer, restore_face_gfpgan]
    results = await restore_faces_batch(file_paths, func_list, batch_size=3)
    if results:
        file_paths = get_file_paths(file_paths, valid_extensions)
        print(f"restore_upscale: get_file_paths: {file_paths}")
        return file_paths
    else:
        return [os.path.join(root, 'error.png')]


def image_noise_softlight_layer_mix(img, texture, output: str = None, opacity: float = 0.7):
    if isinstance(img, Image.Image):
        img = np.array(img).astype(float)
    elif isinstance(img, np.ndarray):
        img = img.astype(float)

    if img.shape[2] == 3 and not isinstance(img, Image.Image):
        img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_RGB2BGR).astype(float)

    overlay = cv2.imread(texture, cv2.IMREAD_UNCHANGED).astype(float)
    start_x = np.random.randint(0, overlay.shape[1] - img.shape[1])
    start_y = np.random.randint(0, overlay.shape[0] - img.shape[0])
    overlay = overlay[start_y:start_y + img.shape[0], start_x:start_x + img.shape[1]]
    if img.shape[2] == 3:
        img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_RGB2RGBA).astype(float)
    if overlay.shape[2] == 3:
        overlay = cv2.cvtColor(overlay.astype(np.uint8), cv2.COLOR_RGB2RGBA).astype(float)
    overlay[..., 3] *= opacity
    img_in_norm = img / 255.0
    img_layer_norm = overlay / 255.0
    comp_alpha = np.minimum(img_in_norm[:, :, 3], img_layer_norm[:, :, 3]) * 1.0
    new_alpha = img_in_norm[:, :, 3] + (1.0 - img_in_norm[:, :, 3]) * comp_alpha
    np.seterr(divide='ignore', invalid='ignore')
    ratio = comp_alpha / new_alpha
    ratio[ratio == np.NAN] = 0.0
    comp = (1.0 - img_in_norm[:, :, :3]) * img_in_norm[:, :, :3] * img_layer_norm[:, :, :3] + img_in_norm[:, :, :3] * (
            1.0 - (1.0 - img_in_norm[:, :, :3]) * (1.0 - img_layer_norm[:, :, :3]))
    ratio_rs = np.reshape(np.repeat(ratio, 3), [comp.shape[0], comp.shape[1], comp.shape[2]])
    img_out = comp * ratio_rs + img_in_norm[:, :, :3] * (1.0 - ratio_rs)
    img_out = np.nan_to_num(np.dstack((img_out, img_in_norm[:, :, 3])))
    result = img_out * 255.0
    rgb_image = cv2.cvtColor(result.astype(np.uint8), cv2.COLOR_BGR2RGB)
    image = Image.fromarray(rgb_image)
    return np.array(image)


def apply_texture(input_image, textures_choice, opacity_slider):
    result = image_noise_softlight_layer_mix(input_image, os.path.join(textures_folder, textures_choice), opacity=opacity_slider)
    return [result]


with gr.Blocks(analytics_enabled=False, css=radio_css) as demo:
    with gr.Tab(label="восстановление лиц", id=1, elem_id="restore_tab"):
        restore_method = gr.Radio(["codeformer", "gfpgan", "оба"], value="codeformer", label="", interactive=True)
        restore_method.change(fn=lambda x: print(f"restore_method value = {x}"), inputs=restore_method, api_name="show_selected_method")
        file_output = gr.Gallery(label="", container=True, object_fit="cover", columns=4, rows=4, allow_preview=True, preview=True, show_share_button=False, show_download_button=False, elem_id="restored_images")
        upload_button = gr.UploadButton("выбор изображений для обработки", file_types=["image"], file_count="multiple", variant="primary")
        upload_button.upload(fn=restore_upscale, inputs=[upload_button, restore_method], outputs=file_output, api_name="face_restore")
    with gr.Tab(label="наложение зернистости пленки и шума", id=2, elem_id="textures_tab"):
        with gr.Row(variant="compact", elem_id="textures_tab_images"):
            input_image = gr.Image(label="исходник", sources=["upload", "clipboard"], type="numpy")
            result_image = gr.Gallery(label="результат", elem_id="textured_result", allow_preview=True, preview=True, show_share_button=False, show_download_button=False)
        opacity_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="видимость")
        apply_button = gr.Button(value="применить", variant="primary")
        texture_files = [(f"{i:02d}", texture) for i, texture in enumerate(os.listdir(textures_folder), start=1) if os.path.splitext(texture)[1].lower() in valid_extensions]
        textures_choice = gr.Radio(texture_files, show_label=False, interactive=True, elem_id="textures")
        apply_button.click(fn=apply_texture, inputs=[input_image, textures_choice, opacity_slider], outputs=result_image, api_name="texturize")


app = FastAPI()


@app.middleware("http")
async def some_fastapi_middleware(request: Request, call_next):
    response = await call_next(request)
    path = request.url.path
    if path == "/":
        response_body = ""
        async for chunk in response.body_iterator:
            response_body += chunk.decode()
        javascript = f"""
        <script type="text/javascript">
        {custom_js}
        </script>
        """
        response_body = response_body.replace("</body>", javascript + "</body>")
        del response.headers["content-length"]
        return Response(
            content=response_body,
            status_code=response.status_code,
            headers=dict(response.headers),
            media_type=response.media_type
        )
    return response

app.mount("/preview", StaticFiles(directory=os.path.join(root, 'preview')), name="preview")
gr.mount_gradio_app(app, demo, path="/")
uvicorn.run(app, host="0.0.0.0", port=7860)