File size: 4,661 Bytes
41e7e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b8ecd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import onnxruntime as rt
import cv2
import numpy as np
from PIL import Image

H, W = 224, 224
classes=['aeroplane','bicycle','bird','boat','bottle','bus','car','cat','chair','cow','diningtable',
         'dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor']

providers = ['CPUExecutionProvider']

m = rt.InferenceSession("./model/yolo_efficient.onnx", providers=providers)

def nms(final_boxes, scores, IOU_threshold=0):
    scores = np.array(scores)
    final_boxes = np.array(final_boxes)

    boxes = final_boxes[...,:-1]

    boxes = [list(map(int, i)) for i in boxes]
    boxes = np.array(boxes)
    
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]


    area = (x2 - x1)*(y2 - y1)

    order = np.argsort(scores)

    pick = []

    while len(order) > 0:
        last = len(order)-1
        i = order[last]
        pick.append(i)

        suppress = [last]

        if len(order)==0:
            break

        for pos in range(last):
            j = order[pos]

            xx1 = max(x1[i], x1[j])
            yy1 = max(y1[i], y1[j])
            xx2 = min(x2[i], x2[j])
            yy2 = min(y2[i], y2[j])

            w = max(0, xx2-xx1+1)
            h = max(0, yy2-yy1+1)

            overlap = float(w*h)/area[j]

            if overlap > IOU_threshold:
                suppress.append(pos)

        order = np.delete(order, suppress)

    return final_boxes[pick]

def detect_obj(input_image):
    try:
        image = np.array(input_image)
        image = cv2.resize(image, (H, W))
        img = image

        image = image.astype(np.float32)
        image = np.expand_dims(image, axis=0)

        output = m.run(['reshape'], {"input": image})
        output = np.squeeze(output, axis=0)

        THRESH=.25


        object_positions = np.concatenate(
                [np.stack(np.where(output[..., 0]>=THRESH), axis=-1),
                 np.stack(np.where(output[..., 5]>=THRESH), axis=-1)], axis=0
        )

        selected_output = []
        for indices in object_positions:
                selected_output.append(output[indices[0]][indices[1]][indices[2]])
        selected_output = np.array(selected_output)

        final_boxes = []
        final_scores = []

        for i,pos in enumerate(object_positions):
            for j in range(2):
                if selected_output[i][j*5]>THRESH:
                    output_box = np.array(output[pos[0]][pos[1]][pos[2]][(j*5)+1:(j*5)+5], dtype=float)

                    x_centre = (np.array(pos[1], dtype=float) + output_box[0])*32
                    y_centre = (np.array(pos[2], dtype=float) + output_box[1])*32

                    x_width, y_height = abs(W*output_box[2]), abs(H*output_box[3])

                    x_min, y_min = int(x_centre - (x_width/2)), int(y_centre-(y_height/2))
                    x_max, y_max = int(x_centre+(x_width/2)), int(y_centre + (y_height/2))

                    if(x_min<0):x_min=0
                    if(y_min<0):y_min=0
                    if(x_max<0):x_max=0
                    if(y_max<0):y_max=0

                    final_boxes.append(
                        [x_min, y_min, x_max, y_max, str(classes[np.argmax(selected_output[..., 10:], axis=-1)[i]])]
                    )
                    final_scores.append(selected_output[i][j*5])

        final_boxes = np.array(final_boxes)

        nms_output = nms(final_boxes, final_scores, 0.3)

        for i in nms_output:
            cv2.rectangle(
                img,
                (int(i[0]), int(i[1])),
                (int(i[2]), int(i[3])), (255, 0, 0)
            )

            cv2.putText(
                img,
                i[-1],
                (int(i[0]), int(i[1])+15),
                cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), 1
            )

        output_pil_img = Image.fromarray(np.uint8(img)).convert('RGB')

        return output_pil_img

    except:
        return input_image


with gr.Blocks(title="YOLOS Object Detection - ClassCat", css=".gradio-container {background:lightyellow;}") as demo:
    gr.HTML('<h1>Yolo Object Detection</h1>')
    gr.HTML("<h4>supported objects are [aeroplane,bicycle,bird,boat,bottle,bus,car,cat,chair,cow,diningtable,dog,horse,motorbike,person,pottedplant,sheep,sofa,train,tvmonitor]</h4>")
    with gr.Row():
        input_image = gr.Image(label="Input image", type="pil")
        output_image = gr.Image(label="Output image", type="pil")

    send_btn = gr.Button("Detect")
    gr.Examples(['./samples/out_1.jpg'], inputs=input_image)

    send_btn.click(fn=detect_obj, inputs=[input_image], outputs=[output_image])


demo.launch(debug=True)