File size: 5,468 Bytes
41e7e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9941ed8
41e7e8e
9941ed8
41e7e8e
 
 
 
 
 
 
 
 
 
 
9941ed8
 
41e7e8e
 
 
 
 
 
 
 
 
 
 
 
9941ed8
41e7e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9941ed8
41e7e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b8ecd8
 
 
9941ed8
5b8ecd8
 
 
9941ed8
5b8ecd8
 
 
9941ed8
 
 
 
 
 
 
 
 
 
 
5b8ecd8
 
9941ed8
5b8ecd8
 
9941ed8
 
5b8ecd8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import onnxruntime as rt
import cv2
import numpy as np
from PIL import Image

H, W = 224, 224
classes=['aeroplane','bicycle','bird','boat','bottle','bus','car','cat','chair','cow','diningtable',
         'dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor']

providers = ['CPUExecutionProvider']

m = rt.InferenceSession("./model/yolo_efficient.onnx", providers=providers)

def nms(final_boxes, scores, IOU_threshold=0):
    scores = np.array(scores)
    final_boxes = np.array(final_boxes)

    boxes = final_boxes[...,:-1]

    boxes = [list(map(int, i)) for i in boxes]
    boxes = np.array(boxes)
    
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]


    area = (x2 - x1)*(y2 - y1)

    order = np.argsort(scores)

    pick = []

    while len(order) > 0:
        last = len(order)-1
        i = order[last]
        pick.append(i)

        suppress = [last]

        if len(order)==0:
            break

        for pos in range(last):
            j = order[pos]

            xx1 = max(x1[i], x1[j])
            yy1 = max(y1[i], y1[j])
            xx2 = min(x2[i], x2[j])
            yy2 = min(y2[i], y2[j])

            w = max(0, xx2-xx1+1)
            h = max(0, yy2-yy1+1)

            overlap = float(w*h)/area[j]

            if overlap > IOU_threshold:
                suppress.append(pos)

        order = np.delete(order, suppress)

    return final_boxes[pick]

def detect_obj(input_image, obj_threshold, bb_threshold):
    try:
        
        image = np.array(input_image)
        image = cv2.resize(image, (H, W))
        img = image

        image = image.astype(np.float32)
        image = np.expand_dims(image, axis=0)

        output = m.run(['reshape'], {"input": image})
        output = np.squeeze(output, axis=0)

        object_positions = np.concatenate(
                [np.stack(np.where(output[..., 0]>=obj_threshold), axis=-1),
                 np.stack(np.where(output[..., 5]>=obj_threshold), axis=-1)], axis=0
        )

        selected_output = []
        for indices in object_positions:
                selected_output.append(output[indices[0]][indices[1]][indices[2]])
        selected_output = np.array(selected_output)

        final_boxes = []
        final_scores = []

        for i,pos in enumerate(object_positions):
            for j in range(2):
                if selected_output[i][j*5]>obj_threshold:
                    output_box = np.array(output[pos[0]][pos[1]][pos[2]][(j*5)+1:(j*5)+5], dtype=float)

                    x_centre = (np.array(pos[1], dtype=float) + output_box[0])*32
                    y_centre = (np.array(pos[2], dtype=float) + output_box[1])*32

                    x_width, y_height = abs(W*output_box[2]), abs(H*output_box[3])

                    x_min, y_min = int(x_centre - (x_width/2)), int(y_centre-(y_height/2))
                    x_max, y_max = int(x_centre+(x_width/2)), int(y_centre + (y_height/2))

                    if(x_min<0):x_min=0
                    if(y_min<0):y_min=0
                    if(x_max<0):x_max=0
                    if(y_max<0):y_max=0

                    final_boxes.append(
                        [x_min, y_min, x_max, y_max, str(classes[np.argmax(selected_output[..., 10:], axis=-1)[i]])]
                    )
                    final_scores.append(selected_output[i][j*5])

        final_boxes = np.array(final_boxes)

        nms_output = nms(final_boxes, final_scores, bb_threshold)

        for i in nms_output:
            cv2.rectangle(
                img,
                (int(i[0]), int(i[1])),
                (int(i[2]), int(i[3])), (255, 0, 0)
            )

            cv2.putText(
                img,
                i[-1],
                (int(i[0]), int(i[1])+15),
                cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), 1
            )

        output_pil_img = Image.fromarray(np.uint8(img)).convert('RGB')

        return output_pil_img

    except:
        return input_image



with gr.Blocks(title="YOLOS Object Detection - ClassCat", css=".gradio-container {background:lightyellow;}") as demo:
    gr.HTML('<h1>Yolo Object Detection</h1>')
    gr.HTML("<h4>supported objects are [aeroplane,bicycle,bird,boat,bottle,bus,car,cat,chair,cow,diningtable,dog,horse,motorbike,person,pottedplant,sheep,sofa,train,tvmonitor]</h4>")
    gr.HTML("<br>")
    with gr.Row():
        input_image = gr.Image(label="Input image", type="pil")
        output_image = gr.Image(label="Output image", type="pil")
    gr.HTML("<br>")
    gr.HTML("<h4>object centre detection threshold means the object centre will be considered a new object if it's value is above threshold</h4>")
    gr.HTML("<p>less means more objects</p>")
    gr.HTML("<h4>bounding box threshold is IOU value threshold. If intersection/union area of two bounding boxes are greater than threshold value the one box will be suppressed</h4>")
    gr.HTML("<p>more means more bounding boxes<p>")
    gr.HTML("<br>")

    obj_threshold = gr.Slider(0, 1.0, value=0.2, label=' object centre detection threshold')
    gr.HTML("<br>")
    bb_threshold = gr.Slider(0, 1.0, value=0.3, label=' bounding box draw threshold')
    gr.HTML("<br>")

    send_btn = gr.Button("Detect")
    gr.HTML("<br>")
    gr.Examples(['./samples/out_1.jpg'], inputs=input_image)

    send_btn.click(fn=detect_obj, inputs=[input_image, obj_threshold, bb_threshold], outputs=[output_image])



demo.launch(debug=True)