QZFantasies's picture
add wheels
c614b0f
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
import os
import sys
sys.path.append("./")
sys.path.append("./engine")
sys.path.append("./engine/pose_estimation")
import copy
import einops
import numpy as np
import roma
import torch
import torch.nn as nn
from blocks import (
Dinov2Backbone,
FourierPositionEncoding,
SMPL_Layer,
TransformerDecoder,
)
from pose_utils import (
inverse_perspective_projection,
pad_to_max,
rebatch,
rot6d_to_rotmat,
undo_focal_length_normalization,
undo_log_depth,
unpatch,
)
from torch import nn
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
class Model(nn.Module):
"""A ViT backbone followed by a "HPH" head (stack of cross attention layers with queries corresponding to detected humans.)"""
def __init__(
self,
backbone="dinov2_vitb14",
pretrained_backbone=False,
img_size=896,
camera_embedding="geometric", # geometric encodes viewing directions with fourrier encoding
camera_embedding_num_bands=16, # increase the size of the camera embedding
camera_embedding_max_resolution=64, # does not increase the size of the camera embedding
nearness=True, # regress log(1/z)
xat_depth=2, # number of cross attention block (SA, CA, MLP) in the HPH head.
xat_num_heads=8, # Number of attention heads
dict_smpl_layer=None,
person_center="head",
clip_dist=True,
num_betas=10,
smplx_dir=None,
*args,
**kwargs,
):
super().__init__()
# Save options
self.img_size = img_size
self.nearness = nearness
self.clip_dist = (clip_dist,)
self.xat_depth = xat_depth
self.xat_num_heads = xat_num_heads
self.num_betas = num_betas
self.output_mesh = True
# Setup backbone
self.backbone = Dinov2Backbone(backbone, pretrained=pretrained_backbone)
self.embed_dim = self.backbone.embed_dim
self.patch_size = self.backbone.patch_size
assert self.img_size % self.patch_size == 0, "Invalid img size"
# Camera instrinsics
self.fovn = 60
self.camera_embedding = camera_embedding
self.camera_embed_dim = 0
if self.camera_embedding is not None:
if not self.camera_embedding == "geometric":
raise NotImplementedError(
"Only geometric camera embedding is implemented"
)
self.camera = FourierPositionEncoding(
n=3,
num_bands=camera_embedding_num_bands,
max_resolution=camera_embedding_max_resolution,
)
# import pdb
# pdb.set_trace()
self.camera_embed_dim = self.camera.channels
# Heads - Detection
self.mlp_classif = regression_mlp(
[self.embed_dim, self.embed_dim, 1]
) # bg or human
# Heads - Human properties
self.mlp_offset = regression_mlp([self.embed_dim, self.embed_dim, 2]) # offset
# SMPL Layers
self.nrot = 53
dict_smpl_layer = {
"neutral": {
10: SMPL_Layer(
smplx_dir,
type="smplx",
gender="neutral",
num_betas=10,
kid=False,
person_center=person_center,
),
11: SMPL_Layer(
smplx_dir,
type="smplx",
gender="neutral",
num_betas=11,
kid=False,
person_center=person_center,
),
}
}
_moduleDict = []
for k, _smpl_layer in dict_smpl_layer.items():
for x, y in _smpl_layer.items():
_moduleDict.append([f"{k}_{x}", copy.deepcopy(y)])
self.smpl_layer = nn.ModuleDict(_moduleDict)
self.x_attention_head = HPH(
num_body_joints=self.nrot - 1, # 23,
context_dim=self.embed_dim + self.camera_embed_dim,
dim=1024,
depth=self.xat_depth,
heads=self.xat_num_heads,
mlp_dim=1024,
dim_head=32,
dropout=0.0,
emb_dropout=0.0,
at_token_res=self.img_size // self.patch_size,
num_betas=self.num_betas,
smplx_dir=smplx_dir,
)
print(f"person center is {person_center}")
# set whether do filter
def set_filter(self, apply_filter):
self.apply_filter = apply_filter
def detection(
self,
z,
nms_kernel_size,
det_thresh,
N,
idx=None,
max_dist=None,
is_training=False,
):
"""Detection score on the entire low res image"""
scores = _sigmoid(self.mlp_classif(z)) # per token detection score.
# Restore Height and Width dimensions.
scores = unpatch(
scores, patch_size=1, c=scores.shape[2], img_size=int(np.sqrt(N))
)
pseudo_idx = idx
if not is_training:
if (
nms_kernel_size > 1
): # Easy nms: supress adjacent high scores with max pooling.
scores = _nms(scores, kernel=nms_kernel_size)
_scores = torch.permute(scores, (0, 2, 3, 1))
# Binary decision (keep confident detections)
idx = apply_threshold(det_thresh, _scores)
if pseudo_idx is not None:
max_dist = 4 if max_dist is None else max_dist
mask = (torch.abs(idx[1] - pseudo_idx[1]) <= max_dist) & (
torch.abs(idx[2] - pseudo_idx[2]) <= max_dist
)
idx_num = torch.sum(mask)
if idx_num < 1:
top = torch.clamp(
pseudo_idx[1] - max_dist, min=0, max=_scores.shape[1] - 1
)
bottom = torch.clamp(
pseudo_idx[1] + max_dist, min=0, max=_scores.shape[1]
)
left = torch.clamp(
pseudo_idx[2] - max_dist, min=0, max=_scores.shape[2] - 1
)
right = torch.clamp(
pseudo_idx[2] + max_dist, min=0, max=_scores.shape[2]
)
neigborhoods = _scores[:, top:bottom, left:right, :]
idx = torch.argmax(neigborhoods)
try:
idx = unravel_index(idx, neigborhoods.shape)
except Exception as e:
print(pseudo_idx)
raise e
idx = (
pseudo_idx[0],
idx[1] + pseudo_idx[1] - max_dist,
idx[2] + pseudo_idx[2] - max_dist,
pseudo_idx[3],
)
elif idx_num > 1: # TODO
idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
else:
idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
# elif bbox is not None:
# mask = (idx[1] >= bbox[1]) & (idx[1] >= bbox[3]) & (idx[2] >= bbox[0]) & (idx[2] <= bbox[2])
# idx_num = torch.sum(mask)
# if idx_num < 1:
# top = torch.clamp(bbox[1], min=0, max=_scores.shape[1]-1)
# bottom = torch.clamp(bbox[3], min=0, max=_scores.shape[1]-1)
# left = torch.clamp(bbox[0], min=0, max=_scores.shape[2]-1)
# right = torch.clamp(bbox[2], min=0, max=_scores.shape[2]-1)
# neigborhoods = _scores[:, top:bottom, left:right, :]
# idx = torch.argmax(neigborhoods)
# try:
# idx = unravel_index(idx, neigborhoods.shape)
# except Exception as e:
# print(pseudo_idx)
# raise e
# idx = (idx[0], idx[1] + top, idx[2] + left, idx[3])
# else:
# idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
else:
assert idx is not None # training time
# Scores
scores_detected = scores[
idx[0], idx[3], idx[1], idx[2]
] # scores of the detected humans only
scores = torch.permute(scores, (0, 2, 3, 1))
return scores, scores_detected, idx
def embedd_camera(self, K, z):
"""Embed viewing directions using fourrier encoding."""
bs = z.shape[0]
_h, _w = list(z.shape[-2:])
points = (
torch.stack(
[
torch.arange(0, _h, 1).reshape(-1, 1).repeat(1, _w),
torch.arange(0, _w, 1).reshape(1, -1).repeat(_h, 1),
],
-1,
)
.to(z.device)
.float()
) # [h,w,2]
points = (
points * self.patch_size + self.patch_size // 2
) # move to pixel space - we give the pixel center of each token
points = points.reshape(1, -1, 2).repeat(bs, 1, 1) # (bs, N, 2): 2D points
distance = torch.ones(bs, points.shape[1], 1).to(
K.device
) # (bs, N, 1): distance in the 3D world
rays = inverse_perspective_projection(points, K, distance) # (bs, N, 3)
rays_embeddings = self.camera(pos=rays)
# Repeat for each element of the batch
z_K = rays_embeddings.reshape(bs, _h, _w, self.camera_embed_dim) # [bs,h,w,D]
return z_K
def to_euclidean_dist(self, x, dist, _K):
# Focal length normalization
focal = _K[:, [0], [0]]
dist = undo_focal_length_normalization(
dist, focal, fovn=self.fovn, img_size=x.shape[-1]
)
# log space
if self.nearness:
dist = undo_log_depth(dist)
# Clamping
if self.clip_dist:
dist = torch.clamp(dist, 0, 50)
return dist
def get_smpl(self):
return self.smpl_layer[f"neutral_{self.num_betas}"]
def generate_meshes(self, out):
"""
Generates meshes for each person detected in the image.
This function processes the output of the detection model, which includes rotation vectors,
shapes, locations, distances, expressions, and other information related to SMPL-X parameters.
Parameters:
out (dict): A dictionary containing detection results and SMPL-X related parameters.
Returns:
list: A list of dictionaries, each containing information about a detected person's mesh.
"""
# Neutral
persons = []
rotvec, shape, loc, dist, expression, K_det = (
out["rotvec"],
out["shape"],
out["loc"],
out["dist"],
out["expression"],
out["K_det"],
)
scores_det = out["scores_det"]
idx = out["idx"]
smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"](
rotvec, shape, loc, dist, None, K=K_det, expression=expression
)
out.update(smpl_out)
for i in range(idx[0].shape[0]):
person = {
# Detection
"scores": scores_det[i], # detection scores
"loc": out["loc"][i], # 2d pixel location of the primary keypoints
# SMPL-X params
"transl": out["transl"][i], # from the primary keypoint i.e. the head
"transl_pelvis": out["transl_pelvis"][i], # of the pelvis joint
"rotvec": out["rotvec"][i],
"expression": out["expression"][i],
"shape": out["shape"][i],
# SMPL-X meshs
"v3d": out["v3d"][i],
"j3d": out["j3d"][i],
"j2d": out["j2d"][i],
}
persons.append(person)
return persons
def forward(
self,
x,
idx=None,
max_dist=None,
det_thresh=0.3,
nms_kernel_size=3,
K=None,
is_training=False,
*args,
**kwargs,
):
"""
Forward pass of the model and compute the loss according to the groundtruth
Args:
- x: RGB image - [bs,3,224,224]
- idx: GT location of persons - tuple of 3 tensor of shape [p]
- idx_j2d: GT location of 2d-kpts for each detected humans - tensor of shape [bs',14,2] - location in pixel space
Return:
- y: [bs,D,16,16]
"""
persons = []
out = {}
# Feature extraction
z = self.backbone(x)
B, N, C = z.size() # [bs,256,768]
# Detection
scores, scores_det, idx = self.detection(
z,
nms_kernel_size=nms_kernel_size,
det_thresh=det_thresh,
N=N,
idx=idx,
max_dist=max_dist,
is_training=is_training,
)
if torch.any(scores_det < 0.1):
return persons
if len(idx[1]) == 0 and not is_training:
# no humans detected in the frame
return persons
# Map of Dense Feature
z = unpatch(
z, patch_size=1, c=z.shape[2], img_size=int(np.sqrt(N))
) # [bs,D,16,16]
z_all = z
# Extract the 'central' features
z = torch.reshape(
z, (z.shape[0], 1, z.shape[1] // 1, z.shape[2], z.shape[3])
) # [bs,stack_K,D,16,16]
z_central = z[idx[0], idx[3], :, idx[1], idx[2]] # dense vectors
# 2D offset regression
offset = self.mlp_offset(z_central)
# Camera instrincs
K_det = K[idx[0]] # cameras for detected person
z_K = self.embedd_camera(K, z) # Embed viewing directions.
z_central = torch.cat(
[z_central, z_K[idx[0], idx[1], idx[2]]], 1
) # Add to query tokens.
z_all = torch.cat(
[z_all, z_K.permute(0, 3, 1, 2)], 1
) # for the cross-attention only
z = torch.cat([z, z_K.permute(0, 3, 1, 2).unsqueeze(1)], 2)
# Distance for estimating the 3D location in 3D space
loc = torch.stack([idx[2], idx[1]]).permute(
1, 0
) # Moving from higher resolution the location of the pelvis
loc = (loc + 0.5 + offset) * self.patch_size
# SMPL parameter regression
kv = z_all[
idx[0]
] # retrieving dense features associated to each central vector
pred_smpl_params, pred_cam = self.x_attention_head(
z_central, kv, idx_0=idx[0], idx_det=idx
)
# Get outputs from the SMPL layer.
shape = pred_smpl_params["betas"]
rotmat = torch.cat(
[pred_smpl_params["global_orient"], pred_smpl_params["body_pose"]], 1
)
expression = pred_smpl_params["expression"]
rotvec = roma.rotmat_to_rotvec(rotmat)
# Distance
dist = pred_cam[:, 0][:, None]
out["dist_postprocessed"] = (
dist # before applying any post-processing such as focal length normalization, inverse or log
)
dist = self.to_euclidean_dist(x, dist, K_det)
# Populate output dictionnary
out.update(
{
"scores": scores,
"offset": offset,
"dist": dist,
"expression": expression,
"rotmat": rotmat,
"shape": shape,
"rotvec": rotvec,
"loc": loc,
}
)
assert (
rotvec.shape[0] == shape.shape[0] == loc.shape[0] == dist.shape[0]
), "Incoherent shapes"
if not self.output_mesh:
out.update(
{
"K_det": K_det,
"scores_det": scores_det,
"idx": idx,
}
)
return out
# Neutral
smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"](
rotvec, shape, loc, dist, None, K=K_det, expression=expression
)
out.update(smpl_out)
# Return
if is_training:
return out
else:
# Populate a dictionnary for each person
for i in range(idx[0].shape[0]):
person = {
# Detection
"scores": scores_det[i], # detection scores
"loc": out["loc"][i], # 2d pixel location of the primary keypoints
# SMPL-X params
"transl": out["transl"][
i
], # from the primary keypoint i.e. the head
"transl_pelvis": out["transl_pelvis"][i], # of the pelvis joint
"rotvec": out["rotvec"][i],
"expression": out["expression"][i],
"shape": out["shape"][i],
# SMPL-X meshs
"v3d": out["v3d"][i],
"j3d": out["j3d"][i],
"j2d": out["j2d"][i],
"dist": out["dist"][i],
"offset": out["offset"][i],
}
persons.append(person)
return persons
class HPH(nn.Module):
"""Cross-attention based SMPL Transformer decoder
Code modified from:
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/heads/smpl_head.py#L17
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L301
"""
def __init__(
self,
num_body_joints=52,
context_dim=1280,
dim=1024,
depth=2,
heads=8,
mlp_dim=1024,
dim_head=64,
dropout=0.0,
emb_dropout=0.0,
at_token_res=32,
num_betas=10,
smplx_dir=None,
):
super().__init__()
self.joint_rep_type, self.joint_rep_dim = "6d", 6
self.num_body_joints = num_body_joints
self.nrot = self.num_body_joints + 1
npose = self.joint_rep_dim * (self.num_body_joints + 1)
self.npose = npose
self.depth = (depth,)
self.heads = (heads,)
self.res = at_token_res
self.input_is_mean_shape = True
_context_dim = context_dim # for the central features
self.num_betas = num_betas
assert num_betas in [10, 11]
# Transformer Decoder setup.
# Based on https://github.com/shubham-goel/4D-Humans/blob/8830bb330558eea2395b7f57088ef0aae7f8fa22/hmr2/configs_hydra/experiment/hmr_vit_transformer.yaml#L35
transformer_args = dict(
num_tokens=1,
token_dim=(
(npose + self.num_betas + 3 + _context_dim)
if self.input_is_mean_shape
else 1
),
dim=dim,
depth=depth,
heads=heads,
mlp_dim=mlp_dim,
dim_head=dim_head,
dropout=dropout,
emb_dropout=emb_dropout,
context_dim=context_dim,
)
self.transformer = TransformerDecoder(**transformer_args)
dim = transformer_args["dim"]
# Final decoders to regress targets
self.decpose, self.decshape, self.deccam, self.decexpression = [
nn.Linear(dim, od) for od in [npose, num_betas, 3, 10]
]
# Register bufffers for the smpl layer.
self.set_smpl_init(smplx_dir)
# Init learned embeddings for the cross attention queries
self.init_learned_queries(context_dim)
def init_learned_queries(self, context_dim, std=0.2):
"""Init learned embeddings for queries"""
self.cross_queries_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_x, std=std)
self.cross_queries_y = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_y, std=std)
self.cross_values_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_values_x, std=std)
self.cross_values_y = nn.Parameter(
nn.Parameter(torch.zeros(self.res, context_dim))
)
torch.nn.init.normal_(self.cross_values_y, std=std)
def set_smpl_init(self, smplx_dir):
"""Fetch saved SMPL parameters and register buffers."""
mean_params = np.load(os.path.join(smplx_dir, "smpl_mean_params.npz"))
if self.nrot == 53:
init_body_pose = (
torch.eye(3)
.reshape(1, 3, 3)
.repeat(self.nrot, 1, 1)[:, :, :2]
.flatten(1)
.reshape(1, -1)
)
init_body_pose[:, : 24 * 6] = torch.from_numpy(
mean_params["pose"][:]
).float() # global_orient+body_pose from SMPL
else:
init_body_pose = torch.from_numpy(
mean_params["pose"].astype(np.float32)
).unsqueeze(0)
init_betas = torch.from_numpy(mean_params["shape"].astype("float32")).unsqueeze(
0
)
init_cam = torch.from_numpy(mean_params["cam"].astype(np.float32)).unsqueeze(0)
init_betas_kid = torch.cat(
[init_betas, torch.zeros_like(init_betas[:, [0]])], 1
)
init_expression = 0.0 * torch.from_numpy(
mean_params["shape"].astype("float32")
).unsqueeze(0)
if self.num_betas == 11:
init_betas = torch.cat([init_betas, torch.zeros_like(init_betas[:, :1])], 1)
self.register_buffer("init_body_pose", init_body_pose)
self.register_buffer("init_betas", init_betas)
self.register_buffer("init_betas_kid", init_betas_kid)
self.register_buffer("init_cam", init_cam)
self.register_buffer("init_expression", init_expression)
def cross_attn_inputs(self, x, x_central, idx_0, idx_det):
"""Reshape and pad x_central to have the right shape for Cross-attention processing.
Inject learned embeddings to query and key inputs at the location of detected people.
"""
h, w = x.shape[2], x.shape[3]
x = einops.rearrange(x, "b c h w -> b (h w) c")
assert idx_0 is not None, "Learned cross queries only work with multicross"
if idx_0.shape[0] > 0:
# reconstruct the batch/nb_people dimensions: pad for images with fewer people than max.
counts, idx_det_0 = rebatch(idx_0, idx_det)
old_shape = x_central.shape
# Legacy check for old versions
assert idx_det is not None, "idx_det needed for learned_attention"
# xx is the tensor with all features
xx = einops.rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
# Get learned embeddings for queries, at positions with detected people.
queries_xy = (
self.cross_queries_x[idx_det[1]] + self.cross_queries_y[idx_det[2]]
)
# Add the embedding to the central features.
x_central = x_central + queries_xy
assert x_central.shape == old_shape, "Problem with shape"
# Make it a tensor of dim. [batch, max_ppl_along_batch, ...]
x_central, mask = pad_to_max(x_central, counts)
# xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
xx = xx[torch.cumsum(counts, dim=0) - 1]
# Inject leared embeddings for key/values at detected locations.
values_xy = (
self.cross_values_x[idx_det[1]] + self.cross_values_y[idx_det[2]]
)
xx[idx_det_0, :, idx_det[1], idx_det[2]] += values_xy
x = einops.rearrange(xx, "b c h w -> b (h w) c")
num_ppl = x_central.shape[1]
else:
mask = None
num_ppl = 1
counts = None
return x, x_central, mask, num_ppl, counts
def forward(self, x_central, x, idx_0=None, idx_det=None, **kwargs):
""" "
Forward the HPH module.
"""
batch_size = x.shape[0]
# Reshape inputs for cross attention and inject learned embeddings for queries and values.
x, x_central, mask, num_ppl, counts = self.cross_attn_inputs(
x, x_central, idx_0, idx_det
)
# Add init (mean smpl params) to the query for each quantity being regressed.
bs = x_central.shape[0] if idx_0.shape[0] else batch_size
expand = lambda x: x.expand(bs, num_ppl, -1)
pred_body_pose, pred_betas, pred_cam, pred_expression = [
expand(x)
for x in [
self.init_body_pose,
self.init_betas,
self.init_cam,
self.init_expression,
]
]
token = torch.cat([x_central, pred_body_pose, pred_betas, pred_cam], dim=-1)
if len(token.shape) == 2:
token = token[:, None, :]
# Process query and inputs with the cross-attention module.
token_out = self.transformer(token, context=x, mask=mask)
# Reshape outputs from [batch_size, nmax_ppl, ...] to [total_ppl, ...]
if mask is not None:
# Stack along batch axis.
token_out_list = [token_out[i, :c, ...] for i, c in enumerate(counts)]
token_out = torch.concat(token_out_list, dim=0)
else:
token_out = token_out.squeeze(1) # (B, C)
# Decoded output token and add to init for each quantity to regress.
reshape = (
(lambda x: x)
if idx_0.shape[0] == 0
else (lambda x: x[0, 0, ...][None, ...])
)
decoders = [self.decpose, self.decshape, self.deccam, self.decexpression]
inits = [pred_body_pose, pred_betas, pred_cam, pred_expression]
pred_body_pose, pred_betas, pred_cam, pred_expression = [
d(token_out) + reshape(i) for d, i in zip(decoders, inits)
]
# Convert self.joint_rep_type -> rotmat
joint_conversion_fn = rot6d_to_rotmat
# conversion
pred_body_pose = joint_conversion_fn(pred_body_pose).view(
batch_size, self.num_body_joints + 1, 3, 3
)
# Build the output dict
pred_smpl_params = {
"global_orient": pred_body_pose[:, [0]],
"body_pose": pred_body_pose[:, 1:],
"betas": pred_betas,
#'betas_kid': pred_betas_kid,
"expression": pred_expression,
}
return pred_smpl_params, pred_cam # , pred_smpl_params_list
def regression_mlp(layers_sizes):
"""
Return a fully connected network.
"""
assert len(layers_sizes) >= 2
in_features = layers_sizes[0]
layers = []
for i in range(1, len(layers_sizes) - 1):
out_features = layers_sizes[i]
layers.append(torch.nn.Linear(in_features, out_features))
layers.append(torch.nn.ReLU())
in_features = out_features
layers.append(torch.nn.Linear(in_features, layers_sizes[-1]))
return torch.nn.Sequential(*layers)
def apply_threshold(det_thresh, _scores):
"""Apply thresholding to detection scores; if stack_K is used and det_thresh is a list, apply to each channel separately"""
if isinstance(det_thresh, list):
det_thresh = det_thresh[0]
idx = torch.where(_scores >= det_thresh)
return idx
def _nms(heat, kernel=3):
"""easy non maximal supression (as in CenterNet)"""
if kernel not in [2, 4]:
pad = (kernel - 1) // 2
else:
if kernel == 2:
pad = 1
else:
pad = 2
hmax = nn.functional.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad)
if hmax.shape[2] > heat.shape[2]:
hmax = hmax[:, :, : heat.shape[2], : heat.shape[3]]
keep = (hmax == heat).float()
return heat * keep
def _sigmoid(x):
y = torch.clamp(x.sigmoid_(), min=1e-4, max=1 - 1e-4)
return y
if __name__ == "__main__":
Model()