File size: 2,027 Bytes
64ea77f
232aeb3
 
038d520
 
232aeb3
 
 
22c64f8
 
232aeb3
 
24d77bb
fbecb15
28c23ee
 
fbecb15
 
232aeb3
28c23ee
4403c6c
b16a490
24d77bb
 
bf8eed8
0aa3d75
 
 
 
 
 
 
 
 
 
 
 
 
eb5ce46
0aa3d75
eb5ce46
0aa3d75
 
 
 
bf8eed8
0aa3d75
a71b15c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import streamlit as st
import cv2 as cv
import time
import torch
from diffusers import StableDiffusionPipeline

# "stabilityai/stable-diffusion-2-1-base"
# "CompVis/stable-diffusion-v1-4"
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
    pipe = StableDiffusionPipeline.from_pretrained(loc)
    pipe = pipe.to(mch)
    return pipe

t2i = st.title("""
Txt2Img
###### `CLICK "Create_Update_Model"` :
- `FIRST RUN OF THE CODE`
- `CHANGING MODEL`""")

the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
                                      "CompVis/stable-diffusion-v1-4"))
create = st.button("Create The Model")

if create:
    st.session_state.t2m_mod = create_model(loc=the_type)


prom = st.text_input("# Prompt",'')

c1,c2,c3 = st.columns([1,1,3])
c4,c5 = st.columns(2)
with c1:
  bu_1 = st.text_input("Seed",'999')
with c2:
  bu_2 = st.text_input("Steps",'12')
with c3:
  bu_3 = st.text_input("Number of Images",'1')
with c4:
  sl_1 = st.slider("Width",128,1024,512,8)
with c5:
  sl_2 = st.slider("hight",128,1024,512,8)

create = st.button("Imagine")
if create:
    generator = torch.Generator("cpu").manual_seed(int(bu_1))
    model = st.session_state.t2m_mod
    img = model(prom, width=int(sl_1), height=int(sl_2), num_inference_steps=int(bu_2), generator=generator).images[0]
    # st.image(img)

    if int(bu_3) == 1 :
      generator = torch.Generator("cpu").manual_seed(int(bu_1))
      model = st.session_state.t2m_mod
      IMG = model(prom, width=int(sl_1), height=int(sl_2),
                    num_inference_steps=int(bu_2),
                    generator=generator).images[0]
      st.image(IMG)
    else :
      generator = torch.Generator("cpu").manual_seed(int(bu_1))
      PROMS = [prom]*int(bu_3)
      model = st.session_state.t2m_mod
      IMGS = model(prom, width=int(sl_1), height=int(sl_2),
                     num_inference_steps=int(bu_2),
                     generator=generator).images
    
      IMGS = np.hstack(IMGS)
      st.image(IMGS)