|
import streamlit as st |
|
import cv2 as cv |
|
import time |
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
|
|
|
|
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'): |
|
pipe = StableDiffusionPipeline.from_pretrained(loc) |
|
pipe = pipe.to(mch) |
|
return pipe |
|
|
|
t2i = st.title(""" |
|
Txt2Img |
|
###### `CLICK "Create_Update_Model"` : |
|
- `FIRST RUN OF THE CODE` |
|
- `CHANGING MODEL`""") |
|
|
|
the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base", |
|
"CompVis/stable-diffusion-v1-4")) |
|
|
|
create = st.button("Create The Model") |
|
|
|
if create: |
|
st.session_state.t2m_mod = create_model(loc=the_type) |
|
|
|
prom = st.text_input("# Prompt",'') |
|
|
|
c1,c2,c3 = st.columns([1,1,3]) |
|
c4,c5 = st.columns(2) |
|
|
|
with c1: |
|
bu_1 = st.text_input("Seed",'999') |
|
with c2: |
|
bu_2 = st.text_input("Steps",'12') |
|
with c3: |
|
bu_3 = st.text_input("Number of Images",'1') |
|
with c4: |
|
sl_1 = st.slider("Width",128,1024,512,8) |
|
with c5: |
|
sl_2 = st.slider("hight",128,1024,512,8) |
|
|
|
st.session_state.generator = torch.Generator("cpu").manual_seed(int(bu_1)) |
|
|
|
create = st.button("Imagine") |
|
|
|
if create: |
|
model = st.session_state.t2m_mod |
|
generator = st.session_state.generator |
|
|
|
if int(bu_3) == 1 : |
|
IMG = model(prom, width=int(sl_1), height=int(sl_2), |
|
num_inference_steps=int(bu_2), |
|
generator=generator).images[0] |
|
st.image(IMG) |
|
|
|
else : |
|
PROMS = [prom]*int(bu_3) |
|
|
|
IMGS = model(PROMS, width=int(sl_1), height=int(sl_2), |
|
num_inference_steps=int(bu_2), |
|
generator=generator).images |
|
|
|
st.image(IMGS) |