File size: 1,656 Bytes
64ea77f
232aeb3
 
038d520
 
232aeb3
4af4d04
22c64f8
 
232aeb3
 
24d77bb
fbecb15
28c23ee
 
fbecb15
 
232aeb3
28c23ee
4403c6c
4af4d04
b16a490
24d77bb
 
bf8eed8
0aa3d75
 
 
 
 
4af4d04
0aa3d75
 
 
 
 
 
 
eb5ce46
0aa3d75
eb5ce46
0aa3d75
ef21c7e
 
0aa3d75
4af4d04
0aa3d75
4af4d04
 
a71b15c
 
 
 
 
 
4af4d04
a71b15c
 
4af4d04
dfa0ea3
a71b15c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import streamlit as st
import cv2 as cv
import time
import torch
from diffusers import StableDiffusionPipeline


def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
    pipe = StableDiffusionPipeline.from_pretrained(loc)
    pipe = pipe.to(mch)
    return pipe

t2i = st.title("""
Txt2Img
###### `CLICK "Create_Update_Model"` :
- `FIRST RUN OF THE CODE`
- `CHANGING MODEL`""")

the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
                                      "CompVis/stable-diffusion-v1-4"))

create = st.button("Create The Model")

if create:
    st.session_state.t2m_mod = create_model(loc=the_type)

prom = st.text_input("# Prompt",'')

c1,c2,c3 = st.columns([1,1,3])
c4,c5 = st.columns(2)

with c1:
  bu_1 = st.text_input("Seed",'999')
with c2:
  bu_2 = st.text_input("Steps",'12')
with c3:
  bu_3 = st.text_input("Number of Images",'1')
with c4:
  sl_1 = st.slider("Width",128,1024,512,8)
with c5:
  sl_2 = st.slider("hight",128,1024,512,8)

st.session_state.generator = torch.Generator("cpu").manual_seed(int(bu_1))

create = st.button("Imagine")

if create:
    model = st.session_state.t2m_mod
    generator = st.session_state.generator

    if int(bu_3) == 1 :
      IMG = model(prom, width=int(sl_1), height=int(sl_2),
                    num_inference_steps=int(bu_2),
                    generator=generator).images[0]
      st.image(IMG)
        
    else :
      PROMS = [prom]*int(bu_3)
        
      IMGS = model(PROMS, width=int(sl_1), height=int(sl_2),
                     num_inference_steps=int(bu_2),
                     generator=generator).images
    
      st.image(IMGS)