File size: 1,656 Bytes
64ea77f 232aeb3 038d520 232aeb3 4af4d04 22c64f8 232aeb3 24d77bb fbecb15 28c23ee fbecb15 232aeb3 28c23ee 4403c6c 4af4d04 b16a490 24d77bb bf8eed8 0aa3d75 4af4d04 0aa3d75 eb5ce46 0aa3d75 eb5ce46 0aa3d75 ef21c7e 0aa3d75 4af4d04 0aa3d75 4af4d04 a71b15c 4af4d04 a71b15c 4af4d04 dfa0ea3 a71b15c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import streamlit as st
import cv2 as cv
import time
import torch
from diffusers import StableDiffusionPipeline
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
pipe = StableDiffusionPipeline.from_pretrained(loc)
pipe = pipe.to(mch)
return pipe
t2i = st.title("""
Txt2Img
###### `CLICK "Create_Update_Model"` :
- `FIRST RUN OF THE CODE`
- `CHANGING MODEL`""")
the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4"))
create = st.button("Create The Model")
if create:
st.session_state.t2m_mod = create_model(loc=the_type)
prom = st.text_input("# Prompt",'')
c1,c2,c3 = st.columns([1,1,3])
c4,c5 = st.columns(2)
with c1:
bu_1 = st.text_input("Seed",'999')
with c2:
bu_2 = st.text_input("Steps",'12')
with c3:
bu_3 = st.text_input("Number of Images",'1')
with c4:
sl_1 = st.slider("Width",128,1024,512,8)
with c5:
sl_2 = st.slider("hight",128,1024,512,8)
st.session_state.generator = torch.Generator("cpu").manual_seed(int(bu_1))
create = st.button("Imagine")
if create:
model = st.session_state.t2m_mod
generator = st.session_state.generator
if int(bu_3) == 1 :
IMG = model(prom, width=int(sl_1), height=int(sl_2),
num_inference_steps=int(bu_2),
generator=generator).images[0]
st.image(IMG)
else :
PROMS = [prom]*int(bu_3)
IMGS = model(PROMS, width=int(sl_1), height=int(sl_2),
num_inference_steps=int(bu_2),
generator=generator).images
st.image(IMGS) |