File size: 10,224 Bytes
e5f7925 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""
from google.colab import drive
drive.mount('/content/drive')
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore') # to avoid warnings
import random
import pandas as pd
from tqdm import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
"""
Sklearn Libraries
"""
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
"""
Transformer Libraries
"""
!pip install transformers
from transformers import BertTokenizer, AutoModelForSequenceClassification, AdamW, get_linear_schedule_with_warmup
"""
Pytorch Libraries
"""
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
esg_data = pd.read_csv("/content/drive/MyDrive/kpmg_personal/concat.csv",
encoding='utf-8')
esg_data
plt.figure(figsize = (15,8))
sns.set(style='darkgrid')
# Increase information on the figure
sns.set(font_scale=1.3)
sns.countplot(x='category', data = esg_data)
plt.title('ESG Category Distribution')
plt.xlabel('E,S,G,N')
plt.ylabel('Number of Contents')
def show_random_contents(total_number, df):
# Get the random number of reviews
n_contents = df.sample(total_number)
# Print each one of the reviews
for val in list(n_contents.index):
print("Contents #°{}".format(val))
print(" - Category: {}".format(df.iloc[val]["category"]))
print(" - Contents: {}".format(df.iloc[val]["contents"]))
print("")
# Show 5 random headlines
show_random_contents(5, esg_data)
def encode_categories_values(df):
possible_categories = df.category.unique()
category_dict = {}
for index, possible_category in enumerate(possible_categories):
category_dict[possible_category] = index
# Encode all the sentiment values
df['label'] = df.category.replace(category_dict)
return df, category_dict
# Perform the encoding task on the data set
esg_data, category_dict = encode_categories_values(esg_data)
X_train,X_val, y_train, y_val = train_test_split(esg_data.index.values,
esg_data.label.values,
test_size = 0.15,
random_state = 2022,
stratify = esg_data.label.values)
esg_data.loc[X_train, 'data_type'] = 'train'
esg_data.loc[X_val, 'data_type'] = 'val'
# Vizualiez the number of sentiment occurence on each type of data
esg_data.groupby(['category', 'label', 'data_type']).count()
# Get the FinBERT Tokenizer
finbert_tokenizer = BertTokenizer.from_pretrained('snunlp/KR-FinBert-SC',
do_lower_case=True)
def get_contents_len(df):
contents_sequence_lengths = []
print("Encoding in progress...")
for content in tqdm(df.contents):
encoded_content = finbert_tokenizer.encode(content,
add_special_tokens = True)
# record the length of the encoded review
contents_sequence_lengths.append(len(encoded_content))
print("End of Task.")
return contents_sequence_lengths
def show_contents_distribution(sequence_lengths, figsize = (15,8)):
# Get the percentage of reviews with length > 512
len_512_plus = [rev_len for rev_len in sequence_lengths if rev_len > 512]
percent = (len(len_512_plus)/len(sequence_lengths))*100
print("Maximum Sequence Length is {}".format(max(sequence_lengths)))
# Configure the plot size
plt.figure(figsize = figsize)
sns.set(style='darkgrid')
# Increase information on the figure
sns.set(font_scale=1.3)
# Plot the result
sns.distplot(sequence_lengths, kde = False, rug = False)
plt.title('Contents Lengths Distribution')
plt.xlabel('Contents Length')
plt.ylabel('Number of Contents')
show_contents_distribution(get_contents_len(esg_data))
# Encode the Training and Validation Data
encoded_data_train = finbert_tokenizer.batch_encode_plus(
esg_data[esg_data.data_type=='train'].contents.values,
return_tensors='pt',
add_special_tokens=True,
return_attention_mask=True,
pad_to_max_length=True,
max_length=200 # the maximum lenght observed in the headlines
)
encoded_data_val = finbert_tokenizer.batch_encode_plus(
esg_data[esg_data.data_type=='val'].contents.values,
return_tensors='pt',
add_special_tokens=True,
return_attention_mask=True,
pad_to_max_length=True,
max_length=200 # the maximum length observed in the headlines
)
input_ids_train = encoded_data_train['input_ids']
attention_masks_train = encoded_data_train['attention_mask']
labels_train = torch.tensor(esg_data[esg_data.data_type=='train'].label.values)
input_ids_val = encoded_data_val['input_ids']
attention_masks_val = encoded_data_val['attention_mask']
sentiments_val = torch.tensor(esg_data[esg_data.data_type=='val'].label.values)
dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train)
dataset_val = TensorDataset(input_ids_val, attention_masks_val, sentiments_val)
model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC",
num_labels=len(category_dict),
output_attentions=False,
output_hidden_states=False,
ignore_mismatched_sizes=True)
batch_size = 5
dataloader_train = DataLoader(dataset_train,
sampler=RandomSampler(dataset_train),
batch_size=batch_size)
dataloader_validation = DataLoader(dataset_val,
sampler=SequentialSampler(dataset_val),
batch_size=batch_size)
optimizer = AdamW(model.parameters(),
lr=1e-5,
eps=1e-8)
epochs = 5
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0,
num_training_steps=len(dataloader_train)*epochs)
def f1_score_func(preds, labels):
preds_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return f1_score(labels_flat, preds_flat, average='weighted')
def accuracy_per_class(preds, labels):
label_dict_inverse = {v: k for k, v in category_dict.items()}
preds_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
for label in np.unique(labels_flat):
y_preds = preds_flat[labels_flat==label]
y_true = labels_flat[labels_flat==label]
print(f'Class: {label_dict_inverse[label]}')
print(f'Accuracy: {len(y_preds[y_preds==label])}/{len(y_true)}\n')
seed_val = 2022
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
def evaluate(dataloader_val):
model.eval()
loss_val_total = 0
predictions, true_vals = [], []
for batch in dataloader_val:
batch = tuple(b.to(device) for b in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[2],
}
with torch.no_grad():
outputs = model(**inputs)
loss = outputs[0]
logits = outputs[1]
loss_val_total += loss.item()
logits = logits.detach().cpu().numpy()
label_ids = inputs['labels'].cpu().numpy()
predictions.append(logits)
true_vals.append(label_ids)
loss_val_avg = loss_val_total/len(dataloader_val)
predictions = np.concatenate(predictions, axis=0)
true_vals = np.concatenate(true_vals, axis=0)
return loss_val_avg, predictions, true_vals
for epoch in tqdm(range(1, epochs+1)):
model.train()
loss_train_total = 0
progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False)
for batch in progress_bar:
model.zero_grad()
batch = tuple(b.to(device) for b in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[2],
}
outputs = model(**inputs)
loss = outputs[0]
loss_train_total += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))})
torch.save(model.state_dict(), f'finetuned_finBERT_epoch_{epoch}.model')
tqdm.write(f'\nEpoch {epoch}')
loss_train_avg = loss_train_total/len(dataloader_train)
tqdm.write(f'Training loss: {loss_train_avg}')
val_loss, predictions, true_vals = evaluate(dataloader_validation)
val_f1 = f1_score_func(predictions, true_vals)
tqdm.write(f'Validation loss: {val_loss}')
tqdm.write(f'F1 Score (Weighted): {val_f1}')
model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC",
num_labels=len(category_dict),
output_attentions=False,
output_hidden_states=False,
ignore_mismatched_sizes=True)
model.to(device)
model.load_state_dict(torch.load('finetuned_finBERT_epoch_4.model',
map_location=torch.device('cpu')))
_, predictions, true_vals = evaluate(dataloader_validation)
accuracy_per_class(predictions, true_vals)
# max_length = 200
|