File size: 10,224 Bytes
e5f7925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

"""

from google.colab import drive
drive.mount('/content/drive')

import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings('ignore') # to avoid warnings

import random
import pandas as pd
from tqdm import tqdm
import seaborn as sns
import matplotlib.pyplot as plt

"""
Sklearn Libraries
"""
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split

"""
Transformer Libraries
"""
!pip install transformers
from transformers import BertTokenizer,  AutoModelForSequenceClassification, AdamW, get_linear_schedule_with_warmup

"""
Pytorch Libraries
"""
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset

esg_data = pd.read_csv("/content/drive/MyDrive/kpmg_personal/concat.csv", 
                             encoding='utf-8')

esg_data

plt.figure(figsize = (15,8))

sns.set(style='darkgrid')
    
# Increase information on the figure
sns.set(font_scale=1.3)
sns.countplot(x='category', data = esg_data)
plt.title('ESG Category Distribution')
plt.xlabel('E,S,G,N')
plt.ylabel('Number of Contents')

def show_random_contents(total_number, df):
    
    # Get the random number of reviews
    n_contents = df.sample(total_number)
    
    # Print each one of the reviews
    for val in list(n_contents.index):
        print("Contents #°{}".format(val))
        print(" - Category: {}".format(df.iloc[val]["category"]))
        print(" - Contents: {}".format(df.iloc[val]["contents"]))
        print("")
        
# Show 5 random headlines
show_random_contents(5, esg_data)

def encode_categories_values(df):
    
    possible_categories = df.category.unique()
    category_dict = {}
    
    for index, possible_category in enumerate(possible_categories):
        category_dict[possible_category] = index
    
    # Encode all the sentiment values
    df['label'] = df.category.replace(category_dict)
    
    return df, category_dict
 
# Perform the encoding task on the data set
esg_data, category_dict = encode_categories_values(esg_data)

X_train,X_val, y_train, y_val = train_test_split(esg_data.index.values, 
                                                  esg_data.label.values, 
                                                  test_size = 0.15, 
                                                  random_state = 2022, 
                                                  stratify = esg_data.label.values)

esg_data.loc[X_train, 'data_type'] = 'train'
esg_data.loc[X_val, 'data_type'] = 'val'

# Vizualiez the number of sentiment occurence on each type of data
esg_data.groupby(['category', 'label', 'data_type']).count()

# Get the FinBERT Tokenizer
finbert_tokenizer = BertTokenizer.from_pretrained('snunlp/KR-FinBert-SC', 
                                          do_lower_case=True)

def get_contents_len(df):
    
    contents_sequence_lengths = []
    
    print("Encoding in progress...")
    for content in tqdm(df.contents):
        encoded_content = finbert_tokenizer.encode(content, 
                                         add_special_tokens = True)
        
        # record the length of the encoded review
        contents_sequence_lengths.append(len(encoded_content))
    print("End of Task.")
    
    return contents_sequence_lengths

def show_contents_distribution(sequence_lengths, figsize = (15,8)):
    
    # Get the percentage of reviews with length > 512
    len_512_plus = [rev_len for rev_len in sequence_lengths if rev_len > 512]
    percent = (len(len_512_plus)/len(sequence_lengths))*100
    
    print("Maximum Sequence Length is {}".format(max(sequence_lengths)))
    
    # Configure the plot size
    plt.figure(figsize = figsize)

    sns.set(style='darkgrid')
    
    # Increase information on the figure
    sns.set(font_scale=1.3)
    
    # Plot the result
    sns.distplot(sequence_lengths, kde = False, rug = False)
    plt.title('Contents Lengths Distribution')
    plt.xlabel('Contents Length')
    plt.ylabel('Number of Contents')

show_contents_distribution(get_contents_len(esg_data))

# Encode the Training and Validation Data
encoded_data_train = finbert_tokenizer.batch_encode_plus(
    esg_data[esg_data.data_type=='train'].contents.values, 
    return_tensors='pt',
    add_special_tokens=True, 
    return_attention_mask=True, 
    pad_to_max_length=True, 
    max_length=200 # the maximum lenght observed in the headlines
)

encoded_data_val = finbert_tokenizer.batch_encode_plus(
    esg_data[esg_data.data_type=='val'].contents.values, 
    return_tensors='pt',
    add_special_tokens=True, 
    return_attention_mask=True, 
    pad_to_max_length=True, 
    max_length=200 # the maximum length observed in the headlines
)


input_ids_train = encoded_data_train['input_ids']
attention_masks_train = encoded_data_train['attention_mask']
labels_train = torch.tensor(esg_data[esg_data.data_type=='train'].label.values)

input_ids_val = encoded_data_val['input_ids']
attention_masks_val = encoded_data_val['attention_mask']
sentiments_val = torch.tensor(esg_data[esg_data.data_type=='val'].label.values)


dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train)
dataset_val = TensorDataset(input_ids_val, attention_masks_val, sentiments_val)

model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC",
                                                          num_labels=len(category_dict),
                                                          output_attentions=False,
                                                          output_hidden_states=False,
                                                           ignore_mismatched_sizes=True)

batch_size = 5

dataloader_train = DataLoader(dataset_train, 
                              sampler=RandomSampler(dataset_train), 
                              batch_size=batch_size)

dataloader_validation = DataLoader(dataset_val, 
                                   sampler=SequentialSampler(dataset_val), 
                                   batch_size=batch_size)

optimizer = AdamW(model.parameters(),
                  lr=1e-5, 
                  eps=1e-8)

epochs = 5

scheduler = get_linear_schedule_with_warmup(optimizer, 
                                            num_warmup_steps=0,
                                            num_training_steps=len(dataloader_train)*epochs)

def f1_score_func(preds, labels):
    preds_flat = np.argmax(preds, axis=1).flatten()
    labels_flat = labels.flatten()
    return f1_score(labels_flat, preds_flat, average='weighted')

def accuracy_per_class(preds, labels):
    label_dict_inverse = {v: k for k, v in category_dict.items()}
    
    preds_flat = np.argmax(preds, axis=1).flatten()
    labels_flat = labels.flatten()

    for label in np.unique(labels_flat):
        y_preds = preds_flat[labels_flat==label]
        y_true = labels_flat[labels_flat==label]
        print(f'Class: {label_dict_inverse[label]}')
        print(f'Accuracy: {len(y_preds[y_preds==label])}/{len(y_true)}\n')

seed_val = 2022
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)


def evaluate(dataloader_val):

    model.eval()
    
    loss_val_total = 0
    predictions, true_vals = [], []
    
    for batch in dataloader_val:
        
        batch = tuple(b.to(device) for b in batch)
        
        inputs = {'input_ids':      batch[0],
                  'attention_mask': batch[1],
                  'labels':         batch[2],
                 }

        with torch.no_grad():        
            outputs = model(**inputs)
            
        loss = outputs[0]
        logits = outputs[1]
        loss_val_total += loss.item()

        logits = logits.detach().cpu().numpy()
        label_ids = inputs['labels'].cpu().numpy()
        predictions.append(logits)
        true_vals.append(label_ids)
    
    loss_val_avg = loss_val_total/len(dataloader_val) 
    
    predictions = np.concatenate(predictions, axis=0)
    true_vals = np.concatenate(true_vals, axis=0)
            
    return loss_val_avg, predictions, true_vals


for epoch in tqdm(range(1, epochs+1)):
    
    model.train()
    
    loss_train_total = 0

    progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False)
    for batch in progress_bar:

        model.zero_grad()
        
        batch = tuple(b.to(device) for b in batch)
        
        inputs = {'input_ids':      batch[0],
                  'attention_mask': batch[1],
                  'labels':         batch[2],
                 }       

        outputs = model(**inputs)
        
        loss = outputs[0]
        loss_train_total += loss.item()
        loss.backward()

        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

        optimizer.step()
        scheduler.step()
        
        progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))})
         
    torch.save(model.state_dict(), f'finetuned_finBERT_epoch_{epoch}.model')
        
    tqdm.write(f'\nEpoch {epoch}')
    
    loss_train_avg = loss_train_total/len(dataloader_train)            
    tqdm.write(f'Training loss: {loss_train_avg}')
    
    val_loss, predictions, true_vals = evaluate(dataloader_validation)
    val_f1 = f1_score_func(predictions, true_vals)
    tqdm.write(f'Validation loss: {val_loss}')
    tqdm.write(f'F1 Score (Weighted): {val_f1}')

model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC",
                                                          num_labels=len(category_dict),
                                                          output_attentions=False,
                                                          output_hidden_states=False,
                                                           ignore_mismatched_sizes=True)

model.to(device)

model.load_state_dict(torch.load('finetuned_finBERT_epoch_4.model', 
                                 map_location=torch.device('cpu')))

_, predictions, true_vals = evaluate(dataloader_validation)

accuracy_per_class(predictions, true_vals)

# max_length = 200