File size: 1,009 Bytes
fd2c1e0
 
 
 
c13ea66
fd2c1e0
 
 
 
c13ea66
 
 
fd2c1e0
c13ea66
02a2188
c13ea66
 
 
1e62ffa
02a2188
c13ea66
02a2188
c13ea66
fd2c1e0
c13ea66
 
02a2188
fd2c1e0
479108b
fd2c1e0
c13ea66
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
import torch
import clip
from PIL import Image
import numpy as np

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

def process_image_and_text(image, text):
    # Ensure text is a NumPy array and convert it to a list of strings
    text_list = text.tolist()

    # Preprocess the image
    image = preprocess(image).unsqueeze(0).to(device)

    # Tokenize the text
    text_tokens = clip.tokenize(text_list).to(device)

    with torch.no_grad():
        # Encode image and text
        image_features = model.encode_image(image)
        text_features = model.encode_text(text_tokens)
        
        # Compute logits and probabilities
        logits_per_image, logits_per_text = model(image, text_tokens)
        probs = logits_per_image.softmax(dim=-1).cpu().numpy()

    return probs

demo = gr.Interface(fn=process_image_and_text, inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox()], outputs="text")
demo.launch()