Update app.py
Browse files
app.py
CHANGED
@@ -2,31 +2,25 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import clip
|
4 |
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
model, preprocess = clip.load("ViT-B/32", device=device)
|
9 |
|
10 |
def process_image_and_text(image, text):
|
11 |
-
|
12 |
text_list = text.tolist()
|
13 |
-
|
14 |
-
# Preprocess the image
|
15 |
image = preprocess(image).unsqueeze(0).to(device)
|
16 |
|
17 |
-
# Tokenize the text
|
18 |
text_tokens = clip.tokenize(text_list).to(device)
|
19 |
|
20 |
with torch.no_grad():
|
21 |
-
# Encode image and text
|
22 |
image_features = model.encode_image(image)
|
23 |
text_features = model.encode_text(text_tokens)
|
24 |
|
25 |
-
# Compute logits and probabilities
|
26 |
logits_per_image, logits_per_text = model(image, text_tokens)
|
27 |
-
probs = logits_per_image.softmax(dim=-1)
|
28 |
-
|
29 |
return probs
|
30 |
|
31 |
-
demo = gr.Interface(fn=process_image_and_text, inputs=[
|
32 |
demo.launch()
|
|
|
2 |
import torch
|
3 |
import clip
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
model, preprocess = clip.load("ViT-B/32", device=device)
|
8 |
|
9 |
def process_image_and_text(image, text):
|
10 |
+
|
11 |
text_list = text.tolist()
|
|
|
|
|
12 |
image = preprocess(image).unsqueeze(0).to(device)
|
13 |
|
|
|
14 |
text_tokens = clip.tokenize(text_list).to(device)
|
15 |
|
16 |
with torch.no_grad():
|
|
|
17 |
image_features = model.encode_image(image)
|
18 |
text_features = model.encode_text(text_tokens)
|
19 |
|
|
|
20 |
logits_per_image, logits_per_text = model(image, text_tokens)
|
21 |
+
probs = logits_per_image.softmax(dim=-1)
|
22 |
+
|
23 |
return probs
|
24 |
|
25 |
+
demo = gr.Interface(fn=process_image_and_text, inputs=['text', 'image'], outputs="text")
|
26 |
demo.launch()
|