Cuda-Quantum-Molecular-Playground / docref /Example_cudaq_logical_aim_agk.py
A19grey's picture
Updating to new 3D visualizer molgallery3D and need to restart space to install
0f5f6d3
# -*- coding: utf-8 -*-
"""Copy of cudaq_logical_aim_agk.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1Jsf9Le8eoCJgddNzYvfQO4E7g--N-DyC
# AIM: Logical Anderson Impurity Model on Sqale using CUDA-Q
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Infleqtion/client-superstaq/blob/main/docs/source/apps/cudaq_logical_aim.ipynb) [![Launch Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Infleqtion/client-superstaq/HEAD?labpath=docs/source/apps/cudaq_logical_aim.ipynb)
Ground state quantum chemistry—computing total energies of molecular configurations to within chemical accuracy—is perhaps the most highly-touted industrial application of fault-tolerant quantum computers. Strongly correlated materials, for example, are particularly interesting, and tools like dynamical mean-field theory (DMFT) allow one to account for the effect of their strong, localized electronic correlations. These DMFT models help predict material properties by approximating the system as a single site impurity inside a “bath” that encompasses the rest of the system. Simulating such dynamics can be a tough task using classical methods, but can be done efficiently on a quantum computer via quantum simulation.
In this notebook, we showcase a workflow for preparing the ground state of the minimal single-impurity Anderson model (SIAM) using the Hamiltonian Variational Ansatz for a range of realistic parameters. As a first step towards running DMFT on a fault-tolerant quantum computer, we will use logical qubits encoded in the `[[4, 2, 2]]` code. Using this workflow, we will obtain the ground state energy estimates via noisy simulation, and then also execute the corresponding optimized circuits on Infleqtion's gate-based neutral-atom quantum computer, making the benefits of logical qubits apparent. More details can be found in our [paper](https://arxiv.org/abs/2412.07670).
[agk] - 2024-12-23 Reference chats to understand AIM model - https://gemini.google.com/app/fce0538c8dc2b6ac and https://x.com/i/grok/share/AV9UkWb4LNtfqm1HfLPEQ78HG
This demo notebook uses CUDA-Q (`cudaq`) and a CUDA-QX library, `cudaq-solvers`; let us first begin by importing (and installing as needed) these packages:
"""
# Commented out IPython magic to ensure Python compatibility.
try:
import cudaq_solvers as solvers
import cudaq
import matplotlib.pyplot as plt
except ImportError:
print("Installing required packages...")
# %pip install --quiet 'cudaq-solvers' 'matplotlib'
print("Installed `cudaq`, `cudaq-solvers`, and `matplotlib` packages.")
print("You may need to restart the kernel to import newly installed packages.")
import cudaq_solvers as solvers
import cudaq
import matplotlib.pyplot as plt
from collections.abc import Mapping, Sequence
import numpy as np
from scipy.optimize import minimize
import os
from IPython.core.display import HTML
print("restarting Kernel")
HTML("<script>Jupyter.notebook.kernel.restart()</script>")
print("Kernel restarted. Probably, I don't know... I'm not magic")
"""## Performing logical Variational Quantum Eigensolver (VQE) with CUDA-QX
To prepare our ground state quantum Anderson impurity model circuits (referred to as AIM circuits in this notebook for short), we use VQE to train an ansatz to minimize a Hamiltonian and obtain optimal angles that can be used to set the AIM circuits. As described in our [paper](https://arxiv.org/abs/2412.07670), the associated restricted Hamiltonian for our SIAM can be reduced to,
$$
\begin{equation}
H_{(U, V)} = U (Z_0 Z_2 - 1) / 4 + V (X_0 + X_2),
\end{equation}
$$
where $U$ is the Coulomb interaction and $V$ the hybridization strength. In this notebook workflow, we will optimize over a 2-dimensional grid of Hamiltonian parameter values, namely $U\in \{1, 5, 9\}$ and $V\in \{-9, -1, 7\}$ (with all values assumed to be in units of eV), to ensure that the ansatz is generally trainable and expressive, and obtain 9 different circuit layers identified by the key $(U, V)$. We will simulate the VQE on GPU (or optionally on CPU if you do not have GPU access), enabled by CUDA-Q, in the absence of noise:
"""
if cudaq.num_available_gpus() == 0:
cudaq.set_target("qpp-cpu", option="fp64")
print("Using CPU no Cuda gpu found")
else:
cudaq.set_target("nvidia", option="fp64")
print("Using GPU")
"""This workflow can be easily defined in CUDA-Q as shown in the cell below, using the CUDA-QX Solvers library (which accelerates quantum algorithms like the VQE):"""
def ansatz(n_qubits: int) -> cudaq.Kernel:
# Create a CUDA-Q parameterized kernel
paramterized_ansatz, variational_angles = cudaq.make_kernel(list)
qubits = paramterized_ansatz.qalloc(n_qubits)
# Using |+> as the initial state:
paramterized_ansatz.h(qubits[0])
paramterized_ansatz.cx(qubits[0], qubits[1])
paramterized_ansatz.rx(variational_angles[0], qubits[0])
paramterized_ansatz.cx(qubits[0], qubits[1])
paramterized_ansatz.rz(variational_angles[1], qubits[1])
paramterized_ansatz.cx(qubits[0], qubits[1])
return paramterized_ansatz
def run_logical_vqe(cudaq_hamiltonian: cudaq.SpinOperator) -> tuple[float, list[float]]:
# Set seed for easier reproduction
np.random.seed(42)
# Initial angles for the optimizer
init_angles = np.random.random(2) * 1e-1
# Obtain CUDA-Q Ansatz
num_qubits = cudaq_hamiltonian.get_qubit_count()
variational_kernel = ansatz(num_qubits)
# Perform VQE optimization
energy, params, _ = solvers.vqe(
variational_kernel,
cudaq_hamiltonian,
init_angles,
optimizer=minimize,
method="SLSQP",
tol=1e-10,
)
return energy, params
"""## Constructing circuits in the `[[4,2,2]]` encoding
The `[[4,2,2]]` code is a quantum error detection code that uses four physical qubits to encode two logical qubits. In this notebook, we will construct two variants of quantum circuits: physical (bare, unencoded) and logical (encoded). These circuits will be informed by the Hamiltonian Variational Ansatz described earlier. To measure all the terms in our Hamiltonian, we will measure the data qubits in both the $Z$- and $X$-basis, as allowed by the `[[4,2,2]]` logical gateset. Full details on the circuit constructions are outlined in our [paper](https://arxiv.org/abs/2412.07670).
Below, we create functions to build our CUDA-Q AIM circuits, both physical and logical versions. As we consider noisy simulation in this notebook, we will include some noisy gates. Here, for simplicity, we will just register a custom identity gate -- to be later used as a noisy operation to model readout error:
"""
cudaq.register_operation("meas_id", np.identity(2))
def aim_physical_circuit(
angles: list[float], basis: str, *, ignore_meas_id: bool = False
) -> cudaq.Kernel:
kernel = cudaq.make_kernel()
qubits = kernel.qalloc(2)
# Bell state prep
kernel.h(qubits[0])
kernel.cx(qubits[0], qubits[1])
# Rx Gate
kernel.rx(angles[0], qubits[0])
# ZZ rotation
kernel.cx(qubits[0], qubits[1])
kernel.rz(angles[1], qubits[1])
kernel.cx(qubits[0], qubits[1])
if basis == "z_basis":
if not ignore_meas_id:
kernel.for_loop(
start=0, stop=2, function=lambda q_idx: getattr(kernel, "meas_id")(qubits[q_idx])
)
kernel.mz(qubits)
elif basis == "x_basis":
kernel.h(qubits)
if not ignore_meas_id:
kernel.for_loop(
start=0, stop=2, function=lambda q_idx: getattr(kernel, "meas_id")(qubits[q_idx])
)
kernel.mz(qubits)
else:
raise ValueError("Unsupported basis provided:", basis)
return kernel
def aim_logical_circuit(
angles: list[float], basis: str, *, ignore_meas_id: bool = False
) -> cudaq.Kernel:
kernel = cudaq.make_kernel()
qubits = kernel.qalloc(6)
kernel.for_loop(start=0, stop=3, function=lambda idx: kernel.h(qubits[idx]))
kernel.cx(qubits[1], qubits[4])
kernel.cx(qubits[2], qubits[3])
kernel.cx(qubits[0], qubits[1])
kernel.cx(qubits[0], qubits[3])
# Rx teleportation
kernel.rx(angles[0], qubits[0])
kernel.cx(qubits[0], qubits[1])
kernel.cx(qubits[0], qubits[3])
kernel.h(qubits[0])
if basis == "z_basis":
if not ignore_meas_id:
kernel.for_loop(
start=0, stop=5, function=lambda idx: getattr(kernel, "meas_id")(qubits[idx])
)
kernel.mz(qubits)
elif basis == "x_basis":
# ZZ rotation and teleportation
kernel.cx(qubits[3], qubits[5])
kernel.cx(qubits[2], qubits[5])
kernel.rz(angles[1], qubits[5])
kernel.cx(qubits[1], qubits[5])
kernel.cx(qubits[4], qubits[5])
kernel.for_loop(start=1, stop=5, function=lambda idx: kernel.h(qubits[idx]))
if not ignore_meas_id:
kernel.for_loop(
start=0, stop=6, function=lambda idx: getattr(kernel, "meas_id")(qubits[idx])
)
kernel.mz(qubits)
else:
raise ValueError("Unsupported basis provided:", basis)
return kernel
"""With the circuit definitions above, we can now define a function that automatically runs the VQE and constructs a dictionary containing all the AIM circuits we want to submit to hardware (or noisily simulate):"""
def generate_circuit_set(ignore_meas_id: bool = False) -> object:
u_vals = [1, 5, 9]
v_vals = [-9, -1, 7]
circuit_dict = {}
for u in u_vals:
for v in v_vals:
qubit_hamiltonian = (
0.25 * u * cudaq.spin.z(0) * cudaq.spin.z(1)
- 0.25 * u
+ v * cudaq.spin.x(0)
+ v * cudaq.spin.x(1)
)
_, opt_params = run_logical_vqe(qubit_hamiltonian)
angles = [float(angle) for angle in opt_params]
print(f"Computed optimal angles={angles} for U={u}, V={v}")
tmp_physical_dict = {}
tmp_logical_dict = {}
for basis in ("z_basis", "x_basis"):
tmp_physical_dict[basis] = aim_physical_circuit(
angles, basis, ignore_meas_id=ignore_meas_id
)
tmp_logical_dict[basis] = aim_logical_circuit(
angles, basis, ignore_meas_id=ignore_meas_id
)
circuit_dict[f"{u}:{v}"] = {
"physical": tmp_physical_dict,
"logical": tmp_logical_dict,
}
print("\nFinished building optimized circuits!")
return circuit_dict
sim_circuit_dict = generate_circuit_set()
circuit_layers = sim_circuit_dict.keys()
"""## Setting up submission and decoding workflow
In this section, we define various helper functions that will play a role in generating the associated energies of the AIM circuits based on the circuit samples (in the different bases), as well as decode the logical circuits with post-selection informed by the `[[4,2,2]]` code:
"""
def _num_qubits(counts: Mapping[str, float]) -> int:
for key in counts:
if key.isdecimal():
return len(key)
return 0
def process_counts(
counts: Mapping[str, float],
data_qubits: Sequence[int],
flag_qubits: Sequence[int] = (),
) -> dict[str, float]:
new_data: dict[str, float] = {}
for key, val in counts.items():
if not all(key[i] == "0" for i in flag_qubits):
continue
new_key = "".join(key[i] for i in data_qubits)
if not set("01").issuperset(new_key):
continue
new_data.setdefault(new_key, 0)
new_data[new_key] += val
return new_data
def decode(counts: Mapping[str, float]) -> dict[str, float]:
"""Decode physical counts into logical counts. Should be called after `process_counts`."""
if not counts:
return {}
num_qubits = _num_qubits(counts)
assert num_qubits % 4 == 0
physical_to_logical = {
"0000": "00",
"1111": "00",
"0011": "01",
"1100": "01",
"0101": "10",
"1010": "10",
"0110": "11",
"1001": "11",
}
new_data: dict[str, float] = {}
for key, val in counts.items():
physical_keys = [key[i : i + 4] for i in range(0, num_qubits, 4)]
logical_keys = [physical_to_logical.get(physical_key) for physical_key in physical_keys]
if None not in logical_keys:
new_key = "".join(logical_keys)
new_data.setdefault(new_key, 0)
new_data[new_key] += val
return new_data
def ev_x(counts: Mapping[str, float]) -> float:
ev = 0.0
for k, val in counts.items():
ev += val * ((-1) ** int(k[0]) + (-1) ** int(k[1]))
total = sum(counts.values())
ev /= total
return ev
def ev_xx(counts: Mapping[str, float]) -> float:
ev = 0.0
for k, val in counts.items():
ev += val * (-1) ** k.count("1")
total = sum(counts.values())
ev /= total
return ev
def ev_zz(counts: Mapping[str, float]) -> float:
ev = 0.0
for k, val in counts.items():
ev += val * (-1) ** k.count("1")
total = sum(counts.values())
ev /= total
return ev
def aim_logical_energies(
data_ordering: object, counts_list: Sequence[dict[str, float]]
) -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:
counts_data = {
data_ordering[i]: decode(
process_counts(
counts,
data_qubits=[1, 2, 3, 4],
flag_qubits=[0, 5],
)
)
for i, counts in enumerate(counts_list)
}
return _aim_energies(counts_data)
def aim_physical_energies(
data_ordering: object, counts_list: Sequence[dict[str, float]]
) -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:
counts_data = {
data_ordering[i]: process_counts(
counts,
data_qubits=[0, 1],
)
for i, counts in enumerate(counts_list)
}
return _aim_energies(counts_data)
def _aim_energies(
counts_data: Mapping[tuple[int, int, str], dict[str, float]],
) -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:
evxs: dict[tuple[int, int], float] = {}
evxxs: dict[tuple[int, int], float] = {}
evzzs: dict[tuple[int, int], float] = {}
totals: dict[tuple[int, int], float] = {}
for key, counts in counts_data.items():
h_params, basis = key
key_a, key_b = h_params.split(":")
u, v = int(key_a), int(key_b)
if basis.startswith("x"):
evxs[u, v] = ev_x(counts)
evxxs[u, v] = ev_xx(counts)
else:
evzzs[u, v] = ev_zz(counts)
totals.setdefault((u, v), 0)
totals[u, v] += sum(counts.values())
energies = {}
uncertainties = {}
for u, v in evxs.keys() & evzzs.keys():
string_key = f"{u}:{v}"
energies[string_key] = u * (evzzs[u, v] - 1) / 4 + v * evxs[u, v]
uncertainty_xx = 2 * v**2 * (1 + evxxs[u, v]) - u * v * evxs[u, v] / 2
uncertainty_zz = u**2 * (1 - evzzs[u, v]) / 2
uncertainties[string_key] = np.sqrt(
(uncertainty_zz + uncertainty_xx - energies[string_key] ** 2) / (totals[u, v] / 2)
)
return energies, uncertainties
def _get_energy_diff(
bf_energies: dict[str, float],
physical_energies: dict[str, float],
logical_energies: dict[str, float],
) -> tuple[list[float], list[float]]:
physical_energy_diff = []
logical_energy_diff = []
# Data ordering following `bf_energies` keys
for layer in bf_energies.keys():
physical_sim_energy = physical_energies[layer]
logical_sim_energy = logical_energies[layer]
true_energy = bf_energies[layer]
u, v = layer.split(":")
print(f"Layer=({u}, {v}) has brute-force energy of: {true_energy}")
print(f"Physical circuit of layer=({u}, {v}) got an energy of: {physical_sim_energy}")
print(f"Logical circuit of layer=({u}, {v}) got an energy of: {logical_sim_energy}")
print("-" * 72)
if logical_sim_energy < physical_sim_energy:
print("Logical circuit achieved the lower energy!")
else:
print("Physical circuit achieved the lower energy")
print("-" * 72, "\n")
physical_energy_diff.append(
-1 * (true_energy - physical_sim_energy)
) # Multiply by -1 since negative energies
logical_energy_diff.append(-1 * (true_energy - logical_sim_energy))
return physical_energy_diff, logical_energy_diff
def submit_aim_circuits(
circuit_dict: object,
*,
folder_path: str = "future_aim_results",
shots_count: int = 1000,
noise_model: cudaq.mlir._mlir_libs._quakeDialects.cudaq_runtime.NoiseModel | None = None,
run_async: bool = False,
) -> dict[str, list[dict[str, int]]] | None:
if run_async:
os.makedirs(folder_path, exist_ok=True)
else:
aim_results = {"physical": [], "logical": []}
for layer in circuit_dict.keys():
if run_async:
print(f"Posting circuits associated with layer=('{layer}')")
else:
print(f"Running circuits associated with layer=('{layer}')")
for basis in ("z_basis", "x_basis"):
if run_async:
u, v = layer.split(":")
tmp_physical_results = cudaq.sample_async(
circuit_dict[layer]["physical"][basis], shots_count=shots_count
)
file = open(f"{folder_path}/physical_{basis}_job_u={u}_v={v}_result.txt", "w")
file.write(str(tmp_physical_results))
file.close()
tmp_logical_results = cudaq.sample_async(
circuit_dict[layer]["logical"][basis], shots_count=shots_count
)
file = open(f"{folder_path}/logical_{basis}_job_u={u}_v={v}_result.txt", "w")
file.write(str(tmp_logical_results))
file.close()
else:
tmp_physical_results = cudaq.sample(
circuit_dict[layer]["physical"][basis],
shots_count=shots_count,
noise_model=noise_model,
)
tmp_logical_results = cudaq.sample(
circuit_dict[layer]["logical"][basis],
shots_count=shots_count,
noise_model=noise_model,
)
aim_results["physical"].append({k: v for k, v in tmp_physical_results.items()})
aim_results["logical"].append({k: v for k, v in tmp_logical_results.items()})
if not run_async:
print("\nCompleted all circuit sampling!")
return aim_results
else:
print("\nAll circuits submitted for async sampling!")
def _get_async_results(
layers: object, *, folder_path: str = "future_aim_results"
) -> dict[str, list[dict[str, int]]]:
aim_results = {"physical": [], "logical": []}
for layer in layers:
print(f"Retrieving all circuits counts associated with layer=('{layer}')")
u, v = layer.split(":")
for basis in ("z_basis", "x_basis"):
file = open(f"{folder_path}/physical_{basis}_job_u={u}_v={v}_result.txt", "r")
tmp_physical_results = cudaq.AsyncSampleResult(str(file.read()))
physical_counts = tmp_physical_results.get()
file = open(f"{folder_path}/logical_{basis}_job_u={u}_v={v}_result.txt", "r")
tmp_logical_results = cudaq.AsyncSampleResult(str(file.read()))
logical_counts = tmp_logical_results.get()
aim_results["physical"].append({k: v for k, v in physical_counts.items()})
aim_results["logical"].append({k: v for k, v in logical_counts.items()})
print("\nObtained all circuit samples!")
return aim_results
"""## Running a CUDA-Q noisy simulation
In this section, we will first explore the performance of the physical and logical circuits under the influence of a device noise model. This will help us predict experimental results, as well as understand the dominant error sources at play. Such a simulation can be achieved via CUDA-Q's density matrix simulator:
"""
cudaq.reset_target()
cudaq.set_target("density-matrix-cpu")
def get_device_noise(
depolar_prob_1q: float,
depolar_prob_2q: float,
*,
readout_error_prob: float | None = None,
custom_gates: list[str] | None = None,
) -> cudaq.mlir._mlir_libs._quakeDialects.cudaq_runtime.NoiseModel:
noise = cudaq.NoiseModel()
depolar_noise = cudaq.DepolarizationChannel(depolar_prob_1q)
noisy_ops = ["z", "s", "x", "h", "rx", "rz"]
for op in noisy_ops:
noise.add_all_qubit_channel(op, depolar_noise)
if custom_gates:
custom_depolar_channel = cudaq.DepolarizationChannel(depolar_prob_1q)
for op in custom_gates:
noise.add_all_qubit_channel(op, custom_depolar_channel)
# Two qubit depolarization error
p_0 = 1 - depolar_prob_2q
p_1 = np.sqrt((1 - p_0**2) / 3)
k0 = np.array(
[[p_0, 0.0, 0.0, 0.0], [0.0, p_0, 0.0, 0.0], [0.0, 0.0, p_0, 0.0], [0.0, 0.0, 0.0, p_0]],
dtype=np.complex128,
)
k1 = np.array(
[[0.0, 0.0, p_1, 0.0], [0.0, 0.0, 0.0, p_1], [p_1, 0.0, 0.0, 0.0], [0.0, p_1, 0.0, 0.0]],
dtype=np.complex128,
)
k2 = np.array(
[
[0.0, 0.0, -1j * p_1, 0.0],
[0.0, 0.0, 0.0, -1j * p_1],
[1j * p_1, 0.0, 0.0, 0.0],
[0.0, 1j * p_1, 0.0, 0.0],
],
dtype=np.complex128,
)
k3 = np.array(
[[p_1, 0.0, 0.0, 0.0], [0.0, p_1, 0.0, 0.0], [0.0, 0.0, -p_1, 0.0], [0.0, 0.0, 0.0, -p_1]],
dtype=np.complex128,
)
kraus_channel = cudaq.KrausChannel([k0, k1, k2, k3])
noise.add_all_qubit_channel("cz", kraus_channel)
noise.add_all_qubit_channel("cx", kraus_channel)
if readout_error_prob is not None:
# Readout error modeled with a Bit flip channel on identity before measurement
bit_flip = cudaq.BitFlipChannel(readout_error_prob)
noise.add_all_qubit_channel("meas_id", bit_flip)
return noise
"""Finally, with our example noise model defined above, we can synchronously & noisily sample all of our AIM circuits by passing `noise_model=cudaq_noise_model` to the workflow containing function `submit_aim_circuits()`:"""
# Example parameters that can model execution on hardware at the high, simulation, level:
# Take single-qubit gate depolarization rate: ~0.2% or better (fidelity ≥99.8%)
# Take two-qubit gate depolarization rate: ~1–2% (fidelity ~98–99%)
cudaq_noise_model = get_device_noise(0.002, 0.02, readout_error_prob=0.02)
aim_sim_data = submit_aim_circuits(sim_circuit_dict, noise_model=cudaq_noise_model)
data_ordering = []
for key in circuit_layers:
for basis in ("z_basis", "x_basis"):
data_ordering.append((key, basis))
sim_physical_energies, sim_physical_uncertainties = aim_physical_energies(
data_ordering, aim_sim_data["physical"]
)
sim_logical_energies, sim_logical_uncertainties = aim_logical_energies(
data_ordering, aim_sim_data["logical"]
)
"""To analyze our simulated energy results in the above cells, we will compare them to the brute-force computed exact ground state energies for the AIM Hamiltonian. For simplicity, these are already stored in the dictionary `bf_energies` below:"""
bf_energies = {
"1:-9": -18.251736027394713,
"1:-1": -2.265564437074638,
"1:7": -14.252231964940428,
"5:-9": -19.293350575766127,
"5:-1": -3.608495283014149,
"5:7": -15.305692796870582,
"9:-9": -20.39007993367173,
"9:-1": -5.260398644698076,
"9:7": -16.429650912487233,
}
"""With the above metric, we can assess the performance of the logical circuits against the physical circuits by considering how far away the respective energies are from the brute-force expected energies. The cell below computes these energy deviations:"""
sim_physical_energy_diff, sim_logical_energy_diff = _get_energy_diff(
bf_energies, sim_physical_energies, sim_logical_energies
)
"""Both physical and logical circuits were subject to the same noise model, but the `[[4,2,2]]` provides additional information that can help overcome some errors. Visualizing the computed energy differences from the above the cell, our noisy simulation provides a preview of the benefits logical qubits can offer:"""
# Diagnostic block because next code block was getting stuck and throwing many errors
print("=== Creating layer labels ===")
layer_labels = [(int(key.split(":")[0]), int(key.split(":")[1])) for key in bf_energies.keys()]
print("=== ge nerating strings ===")
plot_labels = [str(item) for item in layer_labels]
print("=== Variable Type Check ===")
print(f"Type of sim_physical_energy_diff: {type(sim_physical_energy_diff)}")
print(f"Type of sim_physical_uncertainties: {type(sim_physical_uncertainties)}")
print("\n=== Values Preview ===")
print(f"bf_energies keys: {list(bf_energies.keys())[:5]}...") # First 5 keys
print(f"layer_labels: {layer_labels[:5]}...") # First 5 labels
print("\n=== Shape/Length Check ===")
print(f"Length of plot_labels: {len(plot_labels)}")
print(f"Length of sim_physical_energy_diff: {len(sim_physical_energy_diff) if hasattr(sim_physical_energy_diff, 'len') else 'N/A'}")
print(f"Number of uncertainties: {len(sim_physical_uncertainties.values()) if hasattr(sim_physical_uncertainties.values(), 'len') else 'N/A'}")
sim_physical_energy_diff
print("=== Examining sim_physical_uncertainties ===")
print(f"Type: {type(sim_physical_uncertainties)}")
print("\nFirst few key-value pairs:")
for i, (key, value) in enumerate(sim_physical_uncertainties.items()):
if i < 5: # Show first 5 items
print(f"{key}: {value}")
else:
break
print("\n=== Examining sim_physical_energy_diff ===")
print(f"Type: {type(sim_physical_energy_diff)}")
if hasattr(sim_physical_energy_diff, '__iter__'):
print("First few values:")
try:
print(list(sim_physical_energy_diff)[:5])
except:
print("Could not convert to list")
# Convert uncertainties to a list of values
physical_uncertainties = list(sim_physical_uncertainties.values())
logical_uncertainties = list(sim_logical_uncertainties.values())
# Convert energy differences if needed
if isinstance(sim_physical_energy_diff, dict):
energy_diff = list(sim_physical_energy_diff.values())
else:
energy_diff = sim_physical_energy_diff
fig, ax = plt.subplots(figsize=(11, 7), dpi=200)
print("1")
layer_labels = [(int(key.split(":")[0]), int(key.split(":")[1])) for key in bf_energies.keys()]
plot_labels = [str(item) for item in layer_labels]
print("here")
plt.errorbar(
plot_labels,
sim_physical_energy_diff,
yerr=physical_uncertainties,
ecolor=(20 / 255.0, 26 / 255.0, 94 / 255.0),
color=(20 / 255.0, 26 / 255.0, 94 / 255.0),
capsize=4,
elinewidth=1.5,
fmt="o",
markersize=8,
markeredgewidth=1,
label="Physical",
)
print("2")
plt.errorbar(
plot_labels,
sim_logical_energy_diff,
yerr=logical_uncertainties,
color=(0, 177 / 255.0, 152 / 255.0),
ecolor=(0, 177 / 255.0, 152 / 255.0),
capsize=4,
elinewidth=1.5,
fmt="o",
markersize=8,
markeredgewidth=1,
label="Logical",
)
print("3")
ax.set_xlabel("Hamiltonian Parameters (U, V)", fontsize=18)
ax.set_ylabel("Energy above true ground state (in eV)", fontsize=18)
ax.set_title("CUDA-Q AIM Circuits Simulation (lower is better)", fontsize=20)
ax.legend(loc="upper right", fontsize=18.5)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
print("4")
ax.axhline(y=0, color="black", linestyle="--", linewidth=2)
plt.ylim(
top=max(sim_physical_energy_diff) + max(sim_physical_uncertainties.values()) + 0.2, bottom=-0.2
)
print("5")
plt.tight_layout()
plt.show()