Cuda-Quantum-Molecular-Playground / docref /quantum-demo-blueprint.md
A19grey's picture
Updating to new 3D visualizer molgallery3D and need to restart space to install
0f5f6d3

A newer version of the Gradio SDK is available: 5.24.0

Upgrade

NVIDIA Quantum Library Gradio Demo - Project Blueprint

Overview

This project creates an interactive web demo showcasing NVIDIA's CUDA Quantum Library (CUDA-Q) for quantum computations. The demo focuses on the Variational Quantum Eigensolver (VQE) algorithm for molecular energy estimation, providing users with an educational interface for quantum control and simulation.

Project Objectives

  • Create an intuitive, interactive demo of quantum computations using CUDA-Q
  • Visualize molecular energy estimation using the VQE algorithm
  • Provide real-time feedback on quantum simulation parameters
  • Educate users about quantum chemistry concepts

Core Features

Molecule Selection

  • Simple molecule options: H₂, LiH, and HeH⁺
  • Intuitive dropdown or button-based selection interface
  • Expandable framework for additional molecules

Parameter Controls

  • Bond Length Control

    • Range: 0.5 Å to 2.5 Å
    • Real-time updates of molecular geometry
    • Continuous slider interface
  • Bond Angle Adjustment

    • Range: 90° to 180° (for multi-atom molecules)
    • Dynamic updates of molecular structure
    • Visual feedback on angle changes

Visualization Components

  • Energy Convergence Display

    • Real-time line plot showing VQE optimization
    • Interactive zoom and pan capabilities
    • Clear indication of convergence points
  • 3D Molecular Visualization

    • Dynamic molecular structure rendering
    • Rotation and zoom capabilities
    • Real-time updates with parameter changes

Backend Features

  • CUDA-Q integration for quantum calculations
  • VQE algorithm implementation
  • GPU-accelerated computations
  • Real-time parameter optimization

Technology Stack

Frontend Framework

  • Gradio

    • Version: Latest stable
    • Purpose: Web interface construction
    • Key components: Sliders, buttons, plots
  • Bokeh

    • Version: Latest stable
    • Purpose: Interactive plotting
    • Features: Real-time updates, zoom, pan

Quantum Computing Stack

  • NVIDIA CUDA Quantum Library

    • Core quantum simulation engine
    • GPU acceleration support
    • Hybrid quantum-classical optimization
  • Supporting Libraries

    • PySCF (optional): Molecular Hamiltonian preparation
    • Qiskit (optional): Additional quantum tools

Visualization Tools

  • ASE (Atomic Simulation Environment)

    • Molecular geometry handling
    • Structure visualization
    • Real-time updates
  • Matplotlib

    • Backup plotting capability
    • Static visualizations
    • Export functionality

Core Dependencies

  • NumPy (≥1.20.0)
  • SciPy (≥1.7.0)
  • CUDA Toolkit (≥11.0)
  • Python (≥3.8)

Implementation Guide

1. Environment Setup

# Core dependencies
pip install gradio>=3.50.0 bokeh>=3.0.0 matplotlib>=3.5.0
pip install ase>=3.22.0 numpy>=1.20.0 scipy>=1.7.0

# NVIDIA components
# Follow NVIDIA documentation for CUDA Toolkit installation
# Install CUDA-Q as per NVIDIA guidelines

2. Molecular System Implementation

# Example molecular system setup
def setup_molecule(name: str, bond_length: float):
    molecules = {
        'H2': create_h2_molecule,
        'LiH': create_lih_molecule,
        'HeH+': create_heh_molecule
    }
    return molecules[name](bond_length)

3. VQE Algorithm Setup

# Basic VQE implementation structure
class VQESimulation:
    def __init__(self, molecule, ansatz):
        self.molecule = molecule
        self.ansatz = ansatz
        
    # Implementation using CUDA-Q
result = optimizer.minimize(self.cost_function, initial_parameters, callback=self.callback)
return result
def cost_function(self, parameters):
# Compute expectation value
exp_val = cudaq.observe(self.ansatz, self.molecule.hamiltonian, parameters).expectation()
return exp_val

def callback(self, parameters):
# Optionally store or display intermediate results
pass

4. Ansatz Implementation

# Example UCCSD Ansatz implementation
def create_uccsd_ansatz(qubit_num: int, electron_num: int):
@cudaq.kernel
def kernel(qubit_num: int, electron_num: int, thetas: list[float]):
qubits = cudaq.qvector(qubit_num)
for i in range(electron_num):
x(qubits[i])
cudaq.kernels.uccsd(qubits, thetas, electron_num, qubit_num)
return kernel
Cost function using CUDA-Q observe
def cost(theta, kernel, hamiltonian, qubit_count, electron_count):
exp_val = cudaq.observe(kernel, hamiltonian, qubit_count, electron_count, theta).expectation()
return exp_val
Optimization procedure
def run_optimization(initial_params, kernel, hamiltonian, qubit_count, electron_count):
from scipy.optimize import minimize
exp_vals = []
def callback(xk):
exp_vals.append(cost(xk, kernel, hamiltonian, qubit_count, electron_count))
result = minimize(
cost,
initial_params,
args=(kernel, hamiltonian, qubit_count, electron_count),
method='COBYLA',
callback=callback,
options={'maxiter': 500}
)
return result, exp_vals
UI
python:src/ui.py
Gradio interface setup with VQE integration
def create_interface(vqe_simulation):
with gr.Blocks() as demo:
gr.Markdown("# Quantum Chemistry Simulator")
# Molecule Selection
molecule = gr.Dropdown(choices=['H2', 'LiH', 'HeH+'], label="Select Molecule")
# Parameter Controls
bond_length = gr.Slider(0.5, 2.5, step=0.1, label="Bond Length (Å)")
bond_angle = gr.Slider(90, 180, step=1, label="Bond Angle (°)")
electric_field = gr.Slider(0, 10, step=0.1, label="Electric Field (V/nm)")
# Run VQE Button
run_button = gr.Button("Run VQE")
# Output Display
energy_output = gr.Textbox(label="Computed Energy")
convergence_plot = gr.Plot(label="Energy Convergence")
def run_vqe(selected_molecule, bond_len, bond_ang, e_field):
molecule = setup_molecule(selected_molecule, bond_len)
# Update molecular system parameters based on UI inputs
vqe_simulation = VQESimulation(molecule, ansatz)
initial_params = np.random.normal(0, 1, vqe_simulation.ansatz.parameter_count)
result, exp_vals = run_optimization(initial_params, vqe_simulation.ansatz, molecule.hamiltonian, molecule.qubit_count, molecule.electron_count)
energy = result.fun
# Plot convergence
plt.plot(exp_vals)
plt.xlabel('Iterations')
plt.ylabel('Energy')
plt.title('VQE Energy Convergence')
return energy, plt
run_button.click(run_vqe, inputs=[molecule, bond_length, bond_angle, electric_field], outputs=[energy_output, convergence_plot])
return demo
integration

### 7. Advanced VQE Features
- **Parallel Gradients:** Implement parameter shift rule with parallel computations using multiple QPUs for gradient calculations to accelerate optimization.
- **Active Space Reduction:** Allow users to select active space parameters, reducing the number of qubits and parameters for larger molecules, enhancing performance.
- **Gate Fusion:** Optimize larger circuits by implementing gate fusion techniques to improve simulation efficiency on GPU backends.


## Deployment Workflow

### Local Development
1. Clone repository
2. Install dependencies
3. Configure CUDA environment
4. Run development server

### Production Deployment
1. Package application
2. Verify CUDA compatibility
3. Deploy to target platform
4. Configure monitoring

## Testing Strategy

### Unit Tests
- Molecular system creation
- Parameter validation
- Energy calculation accuracy

### Integration Tests
- UI component interaction
- Data flow verification
- GPU utilization

### Performance Tests
- Load testing
- GPU memory usage
- Calculation speed

## Future Enhancements
- Support for larger molecular systems
- Advanced visualization features
- Additional quantum algorithms
- Export functionality for results
- Multi-GPU support

## Documentation
- User guide
- API documentation
- Installation instructions
- Troubleshooting guide

## Maintenance
- Regular dependency updates
- Performance optimization
- Bug fixes and improvements
- User feedback integration