A newer version of the Gradio SDK is available:
5.24.0
NVIDIA Quantum Library Gradio Demo - Project Blueprint
Overview
This project creates an interactive web demo showcasing NVIDIA's CUDA Quantum Library (CUDA-Q) for quantum computations. The demo focuses on the Variational Quantum Eigensolver (VQE) algorithm for molecular energy estimation, providing users with an educational interface for quantum control and simulation.
Project Objectives
- Create an intuitive, interactive demo of quantum computations using CUDA-Q
- Visualize molecular energy estimation using the VQE algorithm
- Provide real-time feedback on quantum simulation parameters
- Educate users about quantum chemistry concepts
Core Features
Molecule Selection
- Simple molecule options: H₂, LiH, and HeH⁺
- Intuitive dropdown or button-based selection interface
- Expandable framework for additional molecules
Parameter Controls
Bond Length Control
- Range: 0.5 Å to 2.5 Å
- Real-time updates of molecular geometry
- Continuous slider interface
Bond Angle Adjustment
- Range: 90° to 180° (for multi-atom molecules)
- Dynamic updates of molecular structure
- Visual feedback on angle changes
Visualization Components
Energy Convergence Display
- Real-time line plot showing VQE optimization
- Interactive zoom and pan capabilities
- Clear indication of convergence points
3D Molecular Visualization
- Dynamic molecular structure rendering
- Rotation and zoom capabilities
- Real-time updates with parameter changes
Backend Features
- CUDA-Q integration for quantum calculations
- VQE algorithm implementation
- GPU-accelerated computations
- Real-time parameter optimization
Technology Stack
Frontend Framework
Gradio
- Version: Latest stable
- Purpose: Web interface construction
- Key components: Sliders, buttons, plots
Bokeh
- Version: Latest stable
- Purpose: Interactive plotting
- Features: Real-time updates, zoom, pan
Quantum Computing Stack
NVIDIA CUDA Quantum Library
- Core quantum simulation engine
- GPU acceleration support
- Hybrid quantum-classical optimization
Supporting Libraries
- PySCF (optional): Molecular Hamiltonian preparation
- Qiskit (optional): Additional quantum tools
Visualization Tools
ASE (Atomic Simulation Environment)
- Molecular geometry handling
- Structure visualization
- Real-time updates
Matplotlib
- Backup plotting capability
- Static visualizations
- Export functionality
Core Dependencies
- NumPy (≥1.20.0)
- SciPy (≥1.7.0)
- CUDA Toolkit (≥11.0)
- Python (≥3.8)
Implementation Guide
1. Environment Setup
# Core dependencies
pip install gradio>=3.50.0 bokeh>=3.0.0 matplotlib>=3.5.0
pip install ase>=3.22.0 numpy>=1.20.0 scipy>=1.7.0
# NVIDIA components
# Follow NVIDIA documentation for CUDA Toolkit installation
# Install CUDA-Q as per NVIDIA guidelines
2. Molecular System Implementation
# Example molecular system setup
def setup_molecule(name: str, bond_length: float):
molecules = {
'H2': create_h2_molecule,
'LiH': create_lih_molecule,
'HeH+': create_heh_molecule
}
return molecules[name](bond_length)
3. VQE Algorithm Setup
# Basic VQE implementation structure
class VQESimulation:
def __init__(self, molecule, ansatz):
self.molecule = molecule
self.ansatz = ansatz
# Implementation using CUDA-Q
result = optimizer.minimize(self.cost_function, initial_parameters, callback=self.callback)
return result
def cost_function(self, parameters):
# Compute expectation value
exp_val = cudaq.observe(self.ansatz, self.molecule.hamiltonian, parameters).expectation()
return exp_val
def callback(self, parameters):
# Optionally store or display intermediate results
pass
4. Ansatz Implementation
# Example UCCSD Ansatz implementation
def create_uccsd_ansatz(qubit_num: int, electron_num: int):
@cudaq.kernel
def kernel(qubit_num: int, electron_num: int, thetas: list[float]):
qubits = cudaq.qvector(qubit_num)
for i in range(electron_num):
x(qubits[i])
cudaq.kernels.uccsd(qubits, thetas, electron_num, qubit_num)
return kernel
Cost function using CUDA-Q observe
def cost(theta, kernel, hamiltonian, qubit_count, electron_count):
exp_val = cudaq.observe(kernel, hamiltonian, qubit_count, electron_count, theta).expectation()
return exp_val
Optimization procedure
def run_optimization(initial_params, kernel, hamiltonian, qubit_count, electron_count):
from scipy.optimize import minimize
exp_vals = []
def callback(xk):
exp_vals.append(cost(xk, kernel, hamiltonian, qubit_count, electron_count))
result = minimize(
cost,
initial_params,
args=(kernel, hamiltonian, qubit_count, electron_count),
method='COBYLA',
callback=callback,
options={'maxiter': 500}
)
return result, exp_vals
UI
python:src/ui.py
Gradio interface setup with VQE integration
def create_interface(vqe_simulation):
with gr.Blocks() as demo:
gr.Markdown("# Quantum Chemistry Simulator")
# Molecule Selection
molecule = gr.Dropdown(choices=['H2', 'LiH', 'HeH+'], label="Select Molecule")
# Parameter Controls
bond_length = gr.Slider(0.5, 2.5, step=0.1, label="Bond Length (Å)")
bond_angle = gr.Slider(90, 180, step=1, label="Bond Angle (°)")
electric_field = gr.Slider(0, 10, step=0.1, label="Electric Field (V/nm)")
# Run VQE Button
run_button = gr.Button("Run VQE")
# Output Display
energy_output = gr.Textbox(label="Computed Energy")
convergence_plot = gr.Plot(label="Energy Convergence")
def run_vqe(selected_molecule, bond_len, bond_ang, e_field):
molecule = setup_molecule(selected_molecule, bond_len)
# Update molecular system parameters based on UI inputs
vqe_simulation = VQESimulation(molecule, ansatz)
initial_params = np.random.normal(0, 1, vqe_simulation.ansatz.parameter_count)
result, exp_vals = run_optimization(initial_params, vqe_simulation.ansatz, molecule.hamiltonian, molecule.qubit_count, molecule.electron_count)
energy = result.fun
# Plot convergence
plt.plot(exp_vals)
plt.xlabel('Iterations')
plt.ylabel('Energy')
plt.title('VQE Energy Convergence')
return energy, plt
run_button.click(run_vqe, inputs=[molecule, bond_length, bond_angle, electric_field], outputs=[energy_output, convergence_plot])
return demo
integration
### 7. Advanced VQE Features
- **Parallel Gradients:** Implement parameter shift rule with parallel computations using multiple QPUs for gradient calculations to accelerate optimization.
- **Active Space Reduction:** Allow users to select active space parameters, reducing the number of qubits and parameters for larger molecules, enhancing performance.
- **Gate Fusion:** Optimize larger circuits by implementing gate fusion techniques to improve simulation efficiency on GPU backends.
## Deployment Workflow
### Local Development
1. Clone repository
2. Install dependencies
3. Configure CUDA environment
4. Run development server
### Production Deployment
1. Package application
2. Verify CUDA compatibility
3. Deploy to target platform
4. Configure monitoring
## Testing Strategy
### Unit Tests
- Molecular system creation
- Parameter validation
- Energy calculation accuracy
### Integration Tests
- UI component interaction
- Data flow verification
- GPU utilization
### Performance Tests
- Load testing
- GPU memory usage
- Calculation speed
## Future Enhancements
- Support for larger molecular systems
- Advanced visualization features
- Additional quantum algorithms
- Export functionality for results
- Multi-GPU support
## Documentation
- User guide
- API documentation
- Installation instructions
- Troubleshooting guide
## Maintenance
- Regular dependency updates
- Performance optimization
- Bug fixes and improvements
- User feedback integration