A19grey's picture
added logging for gradio demo loading and molecule geometry creation
2a24c63
"""
quantum_utils.py
Helper library for running a simplified VQE or quantum simulation
that references CUDA-Q for computations.
References:
- @Cuda-Q_install.md for installation details
- @VQE_Example.md for example VQE code using nvidia or nvidia-mqpu backend
"""
import cudaq
import cudaq_solvers as solvers # Import solvers from cudaq_solvers package
import numpy as np
from scipy.optimize import minimize
import spaces
from typing import Dict, List, Union, Any, Tuple
import sys
import logging
import os
from logging.handlers import RotatingFileHandler
import openfermion
import openfermionpyscf
from openfermion.transforms import jordan_wigner, get_fermion_operator
# Create logs directory if it doesn't exist
os.makedirs('logs', exist_ok=True)
# Create formatters
file_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_formatter = logging.Formatter('%(levelname)s - %(message)s')
# Set up file handler with rotation
file_handler = RotatingFileHandler(
'logs/vqe_simulation.log',
maxBytes=10*1024*1024, # 10MB
backupCount=5
)
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
# Set up console handler with less verbose output
console_handler = logging.StreamHandler()
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO) # Only show INFO and above in console
# Configure logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# Remove any existing handlers
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# Add our handlers
logger.addHandler(file_handler)
logger.addHandler(console_handler)
# Log startup message
logger.info("VQE Simulation module initialized")
print("quantum_utils imported", file=sys.stderr, flush=True)
def setup_target():
"""Set up CUDA-Q target based on available hardware."""
try:
print("Setting up target...", file=sys.stderr, flush=True)
gpu_count = cudaq.num_available_gpus()
print(f"Number of available GPUs: {gpu_count}", file=sys.stderr, flush=True)
if gpu_count > 0:
print("Attempting to set NVIDIA GPU target...", file=sys.stderr, flush=True)
cudaq.set_target("nvidia")
print("Successfully set NVIDIA GPU target", file=sys.stderr, flush=True)
else:
print("No GPU found, attempting to set CPU target...", file=sys.stderr, flush=True)
cudaq.set_target("qpp-cpu")
print("Successfully set CPU target", file=sys.stderr, flush=True)
except Exception as e:
print(f"Error setting up quantum target: {str(e)}", file=sys.stderr, flush=True)
import traceback
print(f"Traceback:\n{traceback.format_exc()}", file=sys.stderr, flush=True)
raise
def vqe_callback(xk):
"""Callback function for VQE optimization to track progress."""
try:
logging.info(f"VQE iteration - Current parameters: {xk}")
return True
except Exception as e:
logging.error(f"Error in VQE callback: {str(e)}")
return False
def validate_ansatz(kernel_generator, init_params, qubit_num, electron_num):
"""Validate the ansatz kernel before VQE."""
try:
logging.debug("Validating ansatz kernel...")
# Set up target before validation
setup_target()
# Generate the kernel with the correct number of qubits and electrons
kernel = kernel_generator(qubit_num, electron_num)
# Log the types and values of parameters and qubits
logging.debug(f"Kernel parameters type: {type(init_params)}, values: {init_params}")
logging.debug(f"Kernel qubits type: {type(qubit_num)}, value: {qubit_num}")
logging.debug(f"Kernel electrons type: {type(electron_num)}, value: {electron_num}")
# Try running the kernel with initial parameters
result = cudaq.sample(kernel, init_params.tolist()) # Convert to list for validation
logging.debug(f"Ansatz validation successful. Sample result: {result}")
return True
except Exception as e:
logging.error(f"Ansatz validation failed: {str(e)}")
return False
# ----------------------------------------------------------
# New or updated utility function for generating a Hamiltonian
# ----------------------------------------------------------
def create_molecular_hamiltonian(geometry: list[tuple[str, tuple[float, float, float]]],
basis: str,
multiplicity: int,
charge: int) -> cudaq.SpinOperator:
"""
Create a SpinOperator for a given molecule using PySCF + OpenFermion + CUDA-Q.
Parameters
----------
geometry : list of (str, (float, float, float)))
List describing each atom, e.g. [('H', (0.,0.,0.)), ('H',(0.,0.,bond_length))]
basis : str
Basis set, e.g. "sto-3g"
multiplicity : int
Spin multiplicity
charge : int
Net charge of the molecule
Returns
-------
cudaq.SpinOperator
The qubit Hamiltonian in CUDA-Q spin-operator form.
"""
try:
# Set up the CUDA-Q target for GPU acceleration
setup_target()
# Use PySCF + OpenFermion to build a molecular object
molecule = openfermionpyscf.run_pyscf(
openfermion.MolecularData(geometry, basis, multiplicity, charge)
)
# Construct the fermionic Hamiltonian
molecular_hamiltonian = molecule.get_molecular_hamiltonian()
fermion_hamiltonian = get_fermion_operator(molecular_hamiltonian)
qubit_hamiltonian = jordan_wigner(fermion_hamiltonian)
# Convert to CUDA-Q SpinOperator
spin_op = cudaq.SpinOperator(qubit_hamiltonian)
return spin_op
except Exception as e:
logging.error(f"Failed to create molecular Hamiltonian: {str(e)}")
raise
# ----------------------------------------------------------
# New or updated function for generating a UCCSD ansatz kernel
# ----------------------------------------------------------
@cudaq.kernel #required to create the kernel object for Nvidia
def kernel(qubit_num: int, electron_num: int, thetas: list[float]):
"""
Generate a UCCSD ansatz kernel given the number of qubits and electrons.
Parameters
----------
qubit_num : int
Number of qubits in the system
electron_num : int
Number of electrons (which is the same as number of X gates for HF ref.)
Returns
-------
A CUDA-Q kernel that accepts parameters for the UCCSD ansatz.
"""
qubits = cudaq.qvector(qubit_num)
# Prepare the Hartree-Fock reference: X on each occupied orbital
for i in range(electron_num):
x(qubits[i]) # Apply X gate to each occupied orbital it is defined in the cuda kernel decorator space
# Add the UCCSD terms
cudaq.kernels.uccsd(qubits, thetas, electron_num, qubit_num)
# define the cost function as the observation of the spin_hamiltonian w.r.t. the ansatz
def cost_function(kernel, spin_hamiltonian, qubit_count, electron_count, thetas):
# The "cost" is the expectation of the spin_operator w.r.t. the ansatz, for these params
exp_val = cudaq.observe(kernel, spin_hamiltonian, qubit_count, electron_count, thetas).expectation()
logging.info(f"Cost function evaluation: {exp_val:.6f}")
return exp_val
def expand_geometry(geometry_template: List[List[Any]], scale_factor: float) -> List[Tuple[str, Tuple[float, float, float]]]:
"""
Expand or contract a molecule's geometry by a scale factor.
Args:
geometry_template: List of [atom_symbol, [x, y, z]] coordinates
scale_factor: Factor to scale the geometry by (1.0 = no change)
Returns:
List of (atom_symbol, (x, y, z)) tuples with scaled coordinates
"""
scaled_geometry = []
logging.debug("expand_geometry: Starting with scale_factor=%f", scale_factor)
logging.debug("expand_geometry: Input geometry_template=%s", geometry_template)
# Find the center of mass (assuming equal weights for simplicity)
coords = np.array([coord for _, coord in geometry_template])
logging.debug("expand_geometry: Computed coordinates array: %s", coords)
center = np.mean(coords, axis=0)
logging.debug("expand_geometry: Computed center of mass: %s", center)
for atom_symbol, coord in geometry_template:
# Convert coord to numpy array for vector operations
coord = np.array(coord)
logging.debug("expand_geometry: Processing atom: %s", atom_symbol)
logging.debug("expand_geometry: Original coordinate: %s", coord)
# Calculate vector from center
vec = coord - center
logging.debug("expand_geometry: Computed vector from center: %s", vec)
# Scale the vector and add back to center
scaled_coord = center + vec * scale_factor
logging.debug("expand_geometry: Scaled coordinate: %s", scaled_coord)
# Convert back to tuple
scaled_geometry.append((atom_symbol, tuple(scaled_coord)))
logging.debug("expand_geometry: Final scaled geometry: %s", scaled_geometry)
return scaled_geometry
def generate_hamiltonian(molecule_data: Dict[str, Any],
scale_factor: float) -> Dict[str, Any]:
"""
Generate the Hamiltonian and its parameters for a given molecule without running VQE optimization.
Parameters
----------
molecule_data : Dict[str, Any]
Dictionary containing all molecule metadata and parameters
scale_factor : float
Factor to scale the molecule geometry by (1.0 = original size)
Returns
-------
Dict[str, Any]
Dictionary containing Hamiltonian information:
- 'hamiltonian': The CUDA-Q SpinOperator Hamiltonian
- 'qubit_count': Number of qubits needed
- 'electron_count': Number of electrons in the system
- 'parameter_count': Number of UCCSD parameters needed
- 'hamiltonian_terms': Number of terms in the Hamiltonian
- 'circuit_latex': LaTeX representation of the quantum circuit
"""
# Get GPU time from molecule data or use default
gpu_time = molecule_data.get('GPU_time', 60)
logger.info(f"Generating Hamiltonian with GPU time: {gpu_time}")
def _generate_hamiltonian_inner():
logging.info(f"Generating Hamiltonian for {molecule_data['name']} with scale factor {scale_factor}")
# Set up the CUDA-Q target
setup_target()
# Create scaled geometry
geometry = expand_geometry(molecule_data['geometry_template'], scale_factor)
logging.info(f"Created scaled geometry with factor = {scale_factor}")
# Generate the Hamiltonian
spin_hamiltonian = create_molecular_hamiltonian(
geometry=geometry,
basis=molecule_data['basis'],
multiplicity=molecule_data['multiplicity'],
charge=molecule_data['charge']
)
# Get Hamiltonian info
term_count = spin_hamiltonian.get_term_count()
logging.debug(f"Hamiltonian has {term_count} terms.")
# Commented out because it's too much info to show in the logs
# logging.debug(f"Hamiltonian details:\n{spin_hamiltonian}")
# Get system parameters
qubit_count = 2 * molecule_data['spatial_orbitals']
electron_count = molecule_data['electron_count']
# Compute UCCSD parameters needed
parameter_count = cudaq.kernels.uccsd_num_parameters(electron_count, qubit_count)
logging.info(f"Number of UCCSD parameters needed = {parameter_count}")
# Generate LaTeX representation of the circuit
try:
logging.info("Starting circuit LaTeX generation")
thetas_draw = np.random.normal(0, 1, parameter_count)
# Draw the circuit in fancy nice stuff
circuit_latex = cudaq.draw(kernel, qubit_count, electron_count, thetas_draw)
# Limit circuit output size
MAX_CIRCUIT_LENGTH = 15000
if len(circuit_latex) > MAX_CIRCUIT_LENGTH:
circuit_latex = circuit_latex[:MAX_CIRCUIT_LENGTH] + "\n... (circuit visualization clipped for size)"
logging.info("Successfully generated circuit LaTeX representation")
logging.debug(f"Circuit LaTeX length: {len(circuit_latex)} characters")
except Exception as e:
logging.error(f"Failed to generate circuit LaTeX: {str(e)}")
circuit_latex = "Error generating circuit visualization"
return {
'hamiltonian': spin_hamiltonian,
'qubit_count': qubit_count,
'electron_count': electron_count,
'parameter_count': parameter_count,
'hamiltonian_terms': term_count,
'circuit_latex': circuit_latex
}
return _generate_hamiltonian_inner()
def run_vqe_simulation(molecule_data: Dict[str, Any],
scale_factor: float,
hamiltonian_only: bool = False) -> Dict[str, Any]:
"""
Run a VQE simulation using CUDA-Q.
Parameters
----------
molecule_data : Dict[str, Any]
Dictionary containing all molecule metadata and parameters
scale_factor : float
Factor to scale the molecule geometry by (1.0 = original size)
hamiltonian_only : bool
If True, only generate the Hamiltonian without running VQE optimization
Returns
-------
Dict[str, Any]
The dictionary containing either just Hamiltonian info or full VQE results
"""
# Get GPU time from molecule data or use default
gpu_time = molecule_data.get('GPU_time', 60)
logger.info(f"Running VQE simulation with GPU time: {gpu_time}")
@spaces.GPU(duration=gpu_time)
def _run_vqe_simulation_inner():
setup_target()
# Generate Hamiltonian and get system parameters
logger.info("Generating Hamiltonian")
ham_info = generate_hamiltonian(molecule_data, scale_factor)
# If only Hamiltonian generation is requested, return early
if hamiltonian_only:
return {
'parameter_count': ham_info['parameter_count'],
'hamiltonian_terms': ham_info['hamiltonian_terms'],
'qubit_count': ham_info['qubit_count'],
'electron_count': ham_info['electron_count'],
'message': "Hamiltonian generated successfully",
'circuit_latex': ham_info['circuit_latex']
}
# Get max iterations from molecule data or use default
optimizer_max_iterations = molecule_data.get('iterations', 25)
# Initialize the parameters for the UCCSD ansatz
thetas0 = np.random.normal(0, 1, ham_info['parameter_count'])
logging.info(f"Initial parameters: {thetas0}")
# Create a wrapper function that only takes the parameters to optimize
def objective_wrapper(thetas):
return cost_function(kernel, ham_info['hamiltonian'], ham_info['qubit_count'], ham_info['electron_count'], thetas)
# Define the callback function that uses the wrapper
exp_vals = []
def callback(xk):
val = objective_wrapper(xk)
exp_vals.append(val)
return True
optimization_success = False
optimization_message = ""
final_energy = float("inf")
final_parameters = []
try:
# Test the wrapper function before optimization
test_val = objective_wrapper(thetas0)
logging.info(f"Debug cost check (initial params): {test_val:.6f}")
if not np.isfinite(test_val):
logging.warning("Debug cost check returned non-finite value. The optimizer may fail.")
# Perform the VQE optimization using the wrapper function
result = minimize(objective_wrapper,
thetas0,
method='COBYLA',
callback=callback,
options={'maxiter': optimizer_max_iterations})
# Store optimization results
final_energy = result.fun
final_parameters = result.x
optimization_success = result.success
optimization_message = (
"VQE optimization completed successfully." if result.success
else f"VQE optimization completed with status: {result.message}"
)
except Exception as e:
logging.error(f"VQE optimization error: {str(e)}")
optimization_message = f"VQE optimization error: {str(e)}"
optimization_success = False
logging.info(optimization_message)
logging.debug(f"Final energy: {final_energy}")
logging.debug(f"Optimized parameters: {final_parameters}")
# Build the results dictionary
results = {
"final_energy": float(final_energy),
"parameters": list(final_parameters),
"success": optimization_success,
"iterations": len(exp_vals),
"history": exp_vals,
"message": optimization_message,
"parameter_count": ham_info['parameter_count'],
"hamiltonian_terms": ham_info['hamiltonian_terms']
}
return results
return _run_vqe_simulation_inner()