Spaces:
Running
on
Zero
Running
on
Zero
""" | |
quantum_utils.py | |
Helper library for running a simplified VQE or quantum simulation | |
that references CUDA-Q for computations. | |
References: | |
- @Cuda-Q_install.md for installation details | |
- @VQE_Example.md for example VQE code using nvidia or nvidia-mqpu backend | |
""" | |
import cudaq | |
import cudaq_solvers as solvers # Import solvers from cudaq_solvers package | |
import numpy as np | |
from scipy.optimize import minimize | |
import spaces | |
from typing import Dict, List, Union, Any, Tuple | |
import sys | |
import logging | |
import os | |
from logging.handlers import RotatingFileHandler | |
import openfermion | |
import openfermionpyscf | |
from openfermion.transforms import jordan_wigner, get_fermion_operator | |
# Create logs directory if it doesn't exist | |
os.makedirs('logs', exist_ok=True) | |
# Create formatters | |
file_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
console_formatter = logging.Formatter('%(levelname)s - %(message)s') | |
# Set up file handler with rotation | |
file_handler = RotatingFileHandler( | |
'logs/vqe_simulation.log', | |
maxBytes=10*1024*1024, # 10MB | |
backupCount=5 | |
) | |
file_handler.setFormatter(file_formatter) | |
file_handler.setLevel(logging.DEBUG) | |
# Set up console handler with less verbose output | |
console_handler = logging.StreamHandler() | |
console_handler.setFormatter(console_formatter) | |
console_handler.setLevel(logging.INFO) # Only show INFO and above in console | |
# Configure logger | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
# Remove any existing handlers | |
for handler in logger.handlers[:]: | |
logger.removeHandler(handler) | |
# Add our handlers | |
logger.addHandler(file_handler) | |
logger.addHandler(console_handler) | |
# Log startup message | |
logger.info("VQE Simulation module initialized") | |
print("quantum_utils imported", file=sys.stderr, flush=True) | |
def setup_target(): | |
"""Set up CUDA-Q target based on available hardware.""" | |
try: | |
print("Setting up target...", file=sys.stderr, flush=True) | |
gpu_count = cudaq.num_available_gpus() | |
print(f"Number of available GPUs: {gpu_count}", file=sys.stderr, flush=True) | |
if gpu_count > 0: | |
print("Attempting to set NVIDIA GPU target...", file=sys.stderr, flush=True) | |
cudaq.set_target("nvidia") | |
print("Successfully set NVIDIA GPU target", file=sys.stderr, flush=True) | |
else: | |
print("No GPU found, attempting to set CPU target...", file=sys.stderr, flush=True) | |
cudaq.set_target("qpp-cpu") | |
print("Successfully set CPU target", file=sys.stderr, flush=True) | |
except Exception as e: | |
print(f"Error setting up quantum target: {str(e)}", file=sys.stderr, flush=True) | |
import traceback | |
print(f"Traceback:\n{traceback.format_exc()}", file=sys.stderr, flush=True) | |
raise | |
def vqe_callback(xk): | |
"""Callback function for VQE optimization to track progress.""" | |
try: | |
logging.info(f"VQE iteration - Current parameters: {xk}") | |
return True | |
except Exception as e: | |
logging.error(f"Error in VQE callback: {str(e)}") | |
return False | |
def validate_ansatz(kernel_generator, init_params, qubit_num, electron_num): | |
"""Validate the ansatz kernel before VQE.""" | |
try: | |
logging.debug("Validating ansatz kernel...") | |
# Set up target before validation | |
setup_target() | |
# Generate the kernel with the correct number of qubits and electrons | |
kernel = kernel_generator(qubit_num, electron_num) | |
# Log the types and values of parameters and qubits | |
logging.debug(f"Kernel parameters type: {type(init_params)}, values: {init_params}") | |
logging.debug(f"Kernel qubits type: {type(qubit_num)}, value: {qubit_num}") | |
logging.debug(f"Kernel electrons type: {type(electron_num)}, value: {electron_num}") | |
# Try running the kernel with initial parameters | |
result = cudaq.sample(kernel, init_params.tolist()) # Convert to list for validation | |
logging.debug(f"Ansatz validation successful. Sample result: {result}") | |
return True | |
except Exception as e: | |
logging.error(f"Ansatz validation failed: {str(e)}") | |
return False | |
# ---------------------------------------------------------- | |
# New or updated utility function for generating a Hamiltonian | |
# ---------------------------------------------------------- | |
def create_molecular_hamiltonian(geometry: list[tuple[str, tuple[float, float, float]]], | |
basis: str, | |
multiplicity: int, | |
charge: int) -> cudaq.SpinOperator: | |
""" | |
Create a SpinOperator for a given molecule using PySCF + OpenFermion + CUDA-Q. | |
Parameters | |
---------- | |
geometry : list of (str, (float, float, float))) | |
List describing each atom, e.g. [('H', (0.,0.,0.)), ('H',(0.,0.,bond_length))] | |
basis : str | |
Basis set, e.g. "sto-3g" | |
multiplicity : int | |
Spin multiplicity | |
charge : int | |
Net charge of the molecule | |
Returns | |
------- | |
cudaq.SpinOperator | |
The qubit Hamiltonian in CUDA-Q spin-operator form. | |
""" | |
try: | |
# Set up the CUDA-Q target for GPU acceleration | |
setup_target() | |
# Use PySCF + OpenFermion to build a molecular object | |
molecule = openfermionpyscf.run_pyscf( | |
openfermion.MolecularData(geometry, basis, multiplicity, charge) | |
) | |
# Construct the fermionic Hamiltonian | |
molecular_hamiltonian = molecule.get_molecular_hamiltonian() | |
fermion_hamiltonian = get_fermion_operator(molecular_hamiltonian) | |
qubit_hamiltonian = jordan_wigner(fermion_hamiltonian) | |
# Convert to CUDA-Q SpinOperator | |
spin_op = cudaq.SpinOperator(qubit_hamiltonian) | |
return spin_op | |
except Exception as e: | |
logging.error(f"Failed to create molecular Hamiltonian: {str(e)}") | |
raise | |
# ---------------------------------------------------------- | |
# New or updated function for generating a UCCSD ansatz kernel | |
# ---------------------------------------------------------- | |
#required to create the kernel object for Nvidia | |
def kernel(qubit_num: int, electron_num: int, thetas: list[float]): | |
""" | |
Generate a UCCSD ansatz kernel given the number of qubits and electrons. | |
Parameters | |
---------- | |
qubit_num : int | |
Number of qubits in the system | |
electron_num : int | |
Number of electrons (which is the same as number of X gates for HF ref.) | |
Returns | |
------- | |
A CUDA-Q kernel that accepts parameters for the UCCSD ansatz. | |
""" | |
qubits = cudaq.qvector(qubit_num) | |
# Prepare the Hartree-Fock reference: X on each occupied orbital | |
for i in range(electron_num): | |
x(qubits[i]) # Apply X gate to each occupied orbital it is defined in the cuda kernel decorator space | |
# Add the UCCSD terms | |
cudaq.kernels.uccsd(qubits, thetas, electron_num, qubit_num) | |
# define the cost function as the observation of the spin_hamiltonian w.r.t. the ansatz | |
def cost_function(kernel, spin_hamiltonian, qubit_count, electron_count, thetas): | |
# The "cost" is the expectation of the spin_operator w.r.t. the ansatz, for these params | |
exp_val = cudaq.observe(kernel, spin_hamiltonian, qubit_count, electron_count, thetas).expectation() | |
logging.info(f"Cost function evaluation: {exp_val:.6f}") | |
return exp_val | |
def expand_geometry(geometry_template: List[List[Any]], scale_factor: float) -> List[Tuple[str, Tuple[float, float, float]]]: | |
""" | |
Expand or contract a molecule's geometry by a scale factor. | |
Args: | |
geometry_template: List of [atom_symbol, [x, y, z]] coordinates | |
scale_factor: Factor to scale the geometry by (1.0 = no change) | |
Returns: | |
List of (atom_symbol, (x, y, z)) tuples with scaled coordinates | |
""" | |
scaled_geometry = [] | |
logging.debug("expand_geometry: Starting with scale_factor=%f", scale_factor) | |
logging.debug("expand_geometry: Input geometry_template=%s", geometry_template) | |
# Find the center of mass (assuming equal weights for simplicity) | |
coords = np.array([coord for _, coord in geometry_template]) | |
logging.debug("expand_geometry: Computed coordinates array: %s", coords) | |
center = np.mean(coords, axis=0) | |
logging.debug("expand_geometry: Computed center of mass: %s", center) | |
for atom_symbol, coord in geometry_template: | |
# Convert coord to numpy array for vector operations | |
coord = np.array(coord) | |
logging.debug("expand_geometry: Processing atom: %s", atom_symbol) | |
logging.debug("expand_geometry: Original coordinate: %s", coord) | |
# Calculate vector from center | |
vec = coord - center | |
logging.debug("expand_geometry: Computed vector from center: %s", vec) | |
# Scale the vector and add back to center | |
scaled_coord = center + vec * scale_factor | |
logging.debug("expand_geometry: Scaled coordinate: %s", scaled_coord) | |
# Convert back to tuple | |
scaled_geometry.append((atom_symbol, tuple(scaled_coord))) | |
logging.debug("expand_geometry: Final scaled geometry: %s", scaled_geometry) | |
return scaled_geometry | |
def generate_hamiltonian(molecule_data: Dict[str, Any], | |
scale_factor: float) -> Dict[str, Any]: | |
""" | |
Generate the Hamiltonian and its parameters for a given molecule without running VQE optimization. | |
Parameters | |
---------- | |
molecule_data : Dict[str, Any] | |
Dictionary containing all molecule metadata and parameters | |
scale_factor : float | |
Factor to scale the molecule geometry by (1.0 = original size) | |
Returns | |
------- | |
Dict[str, Any] | |
Dictionary containing Hamiltonian information: | |
- 'hamiltonian': The CUDA-Q SpinOperator Hamiltonian | |
- 'qubit_count': Number of qubits needed | |
- 'electron_count': Number of electrons in the system | |
- 'parameter_count': Number of UCCSD parameters needed | |
- 'hamiltonian_terms': Number of terms in the Hamiltonian | |
- 'circuit_latex': LaTeX representation of the quantum circuit | |
""" | |
# Get GPU time from molecule data or use default | |
gpu_time = molecule_data.get('GPU_time', 60) | |
logger.info(f"Generating Hamiltonian with GPU time: {gpu_time}") | |
def _generate_hamiltonian_inner(): | |
logging.info(f"Generating Hamiltonian for {molecule_data['name']} with scale factor {scale_factor}") | |
# Set up the CUDA-Q target | |
setup_target() | |
# Create scaled geometry | |
geometry = expand_geometry(molecule_data['geometry_template'], scale_factor) | |
logging.info(f"Created scaled geometry with factor = {scale_factor}") | |
# Generate the Hamiltonian | |
spin_hamiltonian = create_molecular_hamiltonian( | |
geometry=geometry, | |
basis=molecule_data['basis'], | |
multiplicity=molecule_data['multiplicity'], | |
charge=molecule_data['charge'] | |
) | |
# Get Hamiltonian info | |
term_count = spin_hamiltonian.get_term_count() | |
logging.debug(f"Hamiltonian has {term_count} terms.") | |
# Commented out because it's too much info to show in the logs | |
# logging.debug(f"Hamiltonian details:\n{spin_hamiltonian}") | |
# Get system parameters | |
qubit_count = 2 * molecule_data['spatial_orbitals'] | |
electron_count = molecule_data['electron_count'] | |
# Compute UCCSD parameters needed | |
parameter_count = cudaq.kernels.uccsd_num_parameters(electron_count, qubit_count) | |
logging.info(f"Number of UCCSD parameters needed = {parameter_count}") | |
# Generate LaTeX representation of the circuit | |
try: | |
logging.info("Starting circuit LaTeX generation") | |
thetas_draw = np.random.normal(0, 1, parameter_count) | |
# Draw the circuit in fancy nice stuff | |
circuit_latex = cudaq.draw(kernel, qubit_count, electron_count, thetas_draw) | |
# Limit circuit output size | |
MAX_CIRCUIT_LENGTH = 15000 | |
if len(circuit_latex) > MAX_CIRCUIT_LENGTH: | |
circuit_latex = circuit_latex[:MAX_CIRCUIT_LENGTH] + "\n... (circuit visualization clipped for size)" | |
logging.info("Successfully generated circuit LaTeX representation") | |
logging.debug(f"Circuit LaTeX length: {len(circuit_latex)} characters") | |
except Exception as e: | |
logging.error(f"Failed to generate circuit LaTeX: {str(e)}") | |
circuit_latex = "Error generating circuit visualization" | |
return { | |
'hamiltonian': spin_hamiltonian, | |
'qubit_count': qubit_count, | |
'electron_count': electron_count, | |
'parameter_count': parameter_count, | |
'hamiltonian_terms': term_count, | |
'circuit_latex': circuit_latex | |
} | |
return _generate_hamiltonian_inner() | |
def run_vqe_simulation(molecule_data: Dict[str, Any], | |
scale_factor: float, | |
hamiltonian_only: bool = False) -> Dict[str, Any]: | |
""" | |
Run a VQE simulation using CUDA-Q. | |
Parameters | |
---------- | |
molecule_data : Dict[str, Any] | |
Dictionary containing all molecule metadata and parameters | |
scale_factor : float | |
Factor to scale the molecule geometry by (1.0 = original size) | |
hamiltonian_only : bool | |
If True, only generate the Hamiltonian without running VQE optimization | |
Returns | |
------- | |
Dict[str, Any] | |
The dictionary containing either just Hamiltonian info or full VQE results | |
""" | |
# Get GPU time from molecule data or use default | |
gpu_time = molecule_data.get('GPU_time', 60) | |
logger.info(f"Running VQE simulation with GPU time: {gpu_time}") | |
def _run_vqe_simulation_inner(): | |
setup_target() | |
# Generate Hamiltonian and get system parameters | |
logger.info("Generating Hamiltonian") | |
ham_info = generate_hamiltonian(molecule_data, scale_factor) | |
# If only Hamiltonian generation is requested, return early | |
if hamiltonian_only: | |
return { | |
'parameter_count': ham_info['parameter_count'], | |
'hamiltonian_terms': ham_info['hamiltonian_terms'], | |
'qubit_count': ham_info['qubit_count'], | |
'electron_count': ham_info['electron_count'], | |
'message': "Hamiltonian generated successfully", | |
'circuit_latex': ham_info['circuit_latex'] | |
} | |
# Get max iterations from molecule data or use default | |
optimizer_max_iterations = molecule_data.get('iterations', 25) | |
# Initialize the parameters for the UCCSD ansatz | |
thetas0 = np.random.normal(0, 1, ham_info['parameter_count']) | |
logging.info(f"Initial parameters: {thetas0}") | |
# Create a wrapper function that only takes the parameters to optimize | |
def objective_wrapper(thetas): | |
return cost_function(kernel, ham_info['hamiltonian'], ham_info['qubit_count'], ham_info['electron_count'], thetas) | |
# Define the callback function that uses the wrapper | |
exp_vals = [] | |
def callback(xk): | |
val = objective_wrapper(xk) | |
exp_vals.append(val) | |
return True | |
optimization_success = False | |
optimization_message = "" | |
final_energy = float("inf") | |
final_parameters = [] | |
try: | |
# Test the wrapper function before optimization | |
test_val = objective_wrapper(thetas0) | |
logging.info(f"Debug cost check (initial params): {test_val:.6f}") | |
if not np.isfinite(test_val): | |
logging.warning("Debug cost check returned non-finite value. The optimizer may fail.") | |
# Perform the VQE optimization using the wrapper function | |
result = minimize(objective_wrapper, | |
thetas0, | |
method='COBYLA', | |
callback=callback, | |
options={'maxiter': optimizer_max_iterations}) | |
# Store optimization results | |
final_energy = result.fun | |
final_parameters = result.x | |
optimization_success = result.success | |
optimization_message = ( | |
"VQE optimization completed successfully." if result.success | |
else f"VQE optimization completed with status: {result.message}" | |
) | |
except Exception as e: | |
logging.error(f"VQE optimization error: {str(e)}") | |
optimization_message = f"VQE optimization error: {str(e)}" | |
optimization_success = False | |
logging.info(optimization_message) | |
logging.debug(f"Final energy: {final_energy}") | |
logging.debug(f"Optimized parameters: {final_parameters}") | |
# Build the results dictionary | |
results = { | |
"final_energy": float(final_energy), | |
"parameters": list(final_parameters), | |
"success": optimization_success, | |
"iterations": len(exp_vals), | |
"history": exp_vals, | |
"message": optimization_message, | |
"parameter_count": ham_info['parameter_count'], | |
"hamiltonian_terms": ham_info['hamiltonian_terms'] | |
} | |
return results | |
return _run_vqe_simulation_inner() |