Spaces:
Running
Running
File size: 4,038 Bytes
588b16e d087090 588b16e d087090 588b16e d087090 588b16e d087090 588b16e 9237f2d d087090 588b16e d087090 9237f2d 588b16e 007ac39 588b16e d087090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
from PyPDF2 import PdfReader
import openai
import fitz # PyMuPDF
import gradio as gr
class AggressiveContentFinder:
"""
This class identifies and extracts aggressive terms in a contract document using OpenAI's GPT-3.
"""
def __init__(self,filepath):
"""
Initialize the AggressiveContentFinder with your OpenAI API key.
"""
# openai.api_key = openai_api_key
self.filepath = filepath
pass
def _extract_aggressive_content(self, contract_text: str) -> str:
"""
Use OpenAI's GPT-3 to identify aggressive terms in the given contract text.
Args:
contract_text (str): Text extracted from the contract.
Returns:
str: Identified aggressive terms.
"""
try:
response = openai.Completion.create(
engine="text-davinci-003",
prompt=f"""This is a contract document content. Your task is to identify aggressive terms like warning terms, penalties in the given contract:
(Example: "The bank may take possession of the property.")
```contract: {contract_text}```
""",
max_tokens=70,
temperature=0
)
aggressive_terms = response.choices[0].text.strip()
return aggressive_terms
except Exception as e:
print(f"An error occurred during text analysis: {str(e)}")
def get_aggressive_content(self, pdf_file_path: str):
"""
Extract text from a PDF document and identify aggressive terms.
Args:
pdf_file_path (str): Path to the PDF document.
Returns:
str: Identified aggressive terms in the contract document.
This method opens a multi-page PDF using PdfReader and iterates through each page. For each page, it extracts
the text and passes it to the _extract_aggressive_content method for further processing. The identified
aggressive terms are concatenated and returned. If any errors occur during PDF processing, they are logged for
debugging.
"""
try:
print("path:",self.filepath)
# Open the multi-page PDF using PdfReader
pdf = PdfReader(self.filepath)
aggressive_terms = ""
# Extract text from each page and pass it to the process_text function
for page_number in range(len(pdf.pages)):
# Extract text from the page
page = pdf.pages[page_number]
text = page.extract_text()
# Pass the text to the process_text function for further processing
aggressive_terms += self._extract_aggressive_content(text)
return aggressive_terms
except Exception as e:
print(f"An error occurred while processing the PDF document: {str(e)}")
def file_output_fnn(self,file_path):
file_path = file_path.name
return file_path
def gradio_interface(self):
with gr.Blocks(css="style.css",theme='xiaobaiyuan/theme_brief') as demo:
with gr.Row(elem_id = "col-container",scale=0.80):
# with gr.Column(elem_id = "col-container",scale=0.80):
# file1 = gr.File(label="File",elem_classes="filenameshow")
# with gr.Column(elem_id = "col-container",scale=0.20):
# upload_button1 = gr.UploadButton(
# "Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
# elem_classes="uploadbutton")
aggressive_content = gr.Button("Get Aggressive Content",elem_classes="uploadbutton")
with gr.Row(elem_id = "col-container",scale=0.60):
headings = gr.Textbox(label = "Aggressive Content")
# upload_button1.upload(self.file_output_fnn,upload_button1,file1)
aggressive_content.click(self.get_aggressive_content,[],headings)
|