Video_QA / app.py
robertselvam's picture
Create app.py
7f8dd93
raw
history blame
12.5 kB
from stable_whisper import modify_model,results_to_word_srt, results_to_sentence_srt
import whisper
import pysrt
import re
import os
from copy import deepcopy
from typing import List
import os
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
from langchain.document_loaders import UnstructuredPDFLoader
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import FreqDist
from nltk.metrics import jaccard_distance
from moviepy.video.io.VideoFileClip import VideoFileClip
from moviepy.video.VideoClip import ImageClip
from datetime import datetime
import gradio as gr
import nltk
nltk.download('stopwords')
nltk.download('punkt')
huggingfacehub_api_token = os.getenv("HF_TOKEN")
class VideoQA:
def __init__(self):
# self.loader = UnstructuredPDFLoader("/content/Document_ Introduction to Python (1).pdf")
# self.extracted_text=self.loader.load()
# self.huggingfacehub_api_token = # Replace with your Hugging Face token
self.repo_id = "mistralai/Mistral-7B-Instruct-v0.1"
self.llm = HuggingFaceHub(
huggingfacehub_api_token=huggingfacehub_api_token,
repo_id=self.repo_id,
model_kwargs={"temperature": 0.2, "max_new_tokens": 800}
)
def load_model(self,model_selected):
"""
Load a pre-trained machine learning model specified by the `model_selected` parameter
using the `whisper` library and modify it to output word timestamps.
Parameters:
-----------
model_selected : str
A string specifying the name of the pre-trained machine learning model to load.
Returns:
--------
model : object
A modified version of the loaded pre-trained machine learning model that outputs
timestamps for individual words.
"""
model = whisper.load_model(model_selected)
modify_model(model)
return model
def whisper_result_to_srt(self,result):
"""
Convert the output of the Whisper speech recognition model into SubRip subtitle format.
Parameters:
-----------
result : dict
A dictionary containing the output of the Whisper speech recognition model, including word-level
timestamps.
Returns:
--------
srt : str
A string in SubRip subtitle format, containing the word-level transcriptions and timing information
from the Whisper output.
Notes:
------
This function takes the output of the Whisper speech recognition model, which includes word-level timestamps
for each segment of the input audio file, and converts it into SubRip subtitle format. The resulting subtitle
file can be used to display captions or transcripts alongside a video recording of the original audio.
"""
text = []
for i,s in enumerate(result['segments']):
text.append(str(i+1))
time_start = s['start']
hours, minutes, seconds = int(time_start/3600), (time_start/60) % 60, (time_start) % 60
timestamp_start = "%02d:%02d:%06.3f" % (hours, minutes, seconds)
timestamp_start = timestamp_start.replace('.',',')
time_end = s['end']
hours, minutes, seconds = int(time_end/3600), (time_end/60) % 60, (time_end) % 60
timestamp_end = "%02d:%02d:%06.3f" % (hours, minutes, seconds)
timestamp_end = timestamp_end.replace('.',',')
text.append(timestamp_start + " --> " + timestamp_end)
text.append(s['text'].strip() + "\n")
return "\n".join(text)
# model_selected = 'tiny'
def transcribe_video(self,vid, model_selected):
"""
Transcribe the audio in a video file using a pre-trained machine learning model and return the transcription
and its corresponding timestamps in a subtitle format.
Parameters:
-----------
vid : str
A string specifying the path to the video file to be transcribed.
model_selected : str
A string specifying the name of the pre-trained machine learning model to use for transcription.
Returns:
--------
result : dict
A dictionary containing the transcription and its corresponding timestamps in a subtitle format.
"""
model = self.load_model(model_selected)
options = whisper.DecodingOptions(fp16=False)
result = model.transcribe(vid, **options.__dict__)
result['srt'] = self.whisper_result_to_srt(result)
return result
def to_srt(self,lines: List[dict], strip=False) -> str:
"""
lines: List[dict]
[{start:<start-timestamp-of-text>, end:<end-timestamp-of-text>, text:<str-of-text>}, ...]
"""
def secs_to_hhmmss(secs):
mm, ss = divmod(secs, 60)
hh, mm = divmod(mm, 60)
return f'{hh:0>2.0f}:{mm:0>2.0f}:{ss:0>6.3f}'.replace(".", ",")
srt_str = '\n'.join(
f'{i}\n'
f'{secs_to_hhmmss(sub["start"])} --> {secs_to_hhmmss(sub["end"])}\n'
f'{sub["text"].strip() if strip else sub["text"]}\n'
for i, sub in enumerate(lines, 1))
# if save_path:
# with open(save_path, 'w', encoding='utf-8') as f:
# f.write(srt_str)
# print(f'Saved: {os.path.abspath(save_path)}')
return srt_str
def tighten_timestamps(self,res: dict, end_at_last_word=True, end_before_period=False, start_at_first_word=False) -> dict:
res = deepcopy(res)
for i in range(len(res['segments'])):
if start_at_first_word:
res['segments'][i]['start'] = res['segments'][i]['word_timestamps'][0]['timestamp']
if end_before_period and \
res['segments'][i]['word_timestamps'][-1] == '.' and \
len(res['segments'][i]['word_timestamps']) > 1:
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-2]['timestamp']
elif end_at_last_word:
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-1]['timestamp']
return res
def results_to_sentence_srt(self,res: dict,
end_at_last_word=False,
end_before_period=False,
start_at_first_word=False,
strip=False):
"""
Parameters
----------
res: dict
results from modified model
srt_path: str
output path of srt
end_at_last_word: bool
set end-of-sentence to timestamp-of-last-token
end_before_period: bool
set end-of-sentence to timestamp-of-last-non-period-token
start_at_first_word: bool
set start-of-sentence to timestamp-of-first-token
strip: bool
perform strip() on each sentence
"""
strict = any((end_at_last_word, end_before_period, start_at_first_word))
segs = self.tighten_timestamps(res,
end_at_last_word=end_at_last_word,
end_before_period=end_before_period,
start_at_first_word=start_at_first_word)['segments'] \
if strict else res['segments']
max_idx = len(segs) - 1
i = 1
while i <= max_idx:
if not (segs[i]['end'] - segs[i]['start']):
if segs[i - 1]['end'] == segs[i]['end']:
segs[i - 1]['text'] += (' ' + segs[i]['text'].strip())
del segs[i]
max_idx -= 1
continue
else:
segs[i]['start'] = segs[i - 1]['end']
i += 1
srt = self.to_srt(segs, strip=strip)
return srt
def extract_timestamps_and_text(self,input_text):
timestamp_pattern = re.compile(r'(\d{2}:\d{2}:\d{2}.\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2}.\d{3})\n(.+)')
matches = timestamp_pattern.findall(input_text)
data = []
for match in matches:
start_timestamp, end_timestamp, text = match
data.append({
'start_timestamp': start_timestamp,
'end_timestamp': end_timestamp,
'text': text.strip()
})
return data
def generate_contract(self,text,question):
template = """you are the german language and universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.your returning answer must in user's language.otherwise reply i don't know.
extracted_text:{text}
user_question:{question}"""
prompt = PromptTemplate(template=template, input_variables=["text","question"])
llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm)
result = llm_chain.run({"text":text,"question":question})
print()
print()
print("this is answer:",result)
return result
def preprocess_sentence(self,sentence):
stop_words = set(stopwords.words('english'))
words = word_tokenize(sentence.lower())
filtered_words = [word for word in words if word.isalnum() and word not in stop_words]
return filtered_words
def compute_similarity(self,sentence1, sentence2):
words1 = self.preprocess_sentence(sentence1)
words2 = self.preprocess_sentence(sentence2)
freq_dist1 = FreqDist(words1)
freq_dist2 = FreqDist(words2)
jaccard = 1 - jaccard_distance(set(freq_dist1), set(freq_dist2))
return jaccard
def find_most_similar(self,sentence_list, target_sentence):
similarities = [self.compute_similarity(target_sentence, sentence) for sentence in sentence_list]
# Find the index of the most similar sentence
most_similar_index = similarities.index(max(similarities))
# Return the most similar sentence
return sentence_list[most_similar_index]
def start_end_timestamp(self,result,answer):
appended_text = []
for item in result:
appended_text.append(item['text'])
# Find the most similar sentence
matched_sentence = self.find_most_similar(appended_text, answer)
start_time=""
end_time=""
for entry in result:
if matched_sentence in entry['text']:
start_time = entry['start_timestamp']
end_time = entry['end_timestamp']
print(start_time+"\n"+end_time)
return start_time,end_time
def timestamp_to_seconds(self,timestamp):
time_format = "%H:%M:%S,%f"
dt = datetime.strptime(timestamp, time_format)
return dt.hour * 3600 + dt.minute * 60 + dt.second + dt.microsecond / 1e6
def cut_video(self,input_file, output_file, start_timestamp, end_timestamp):
# Convert timestamps to seconds
start_time = self.timestamp_to_seconds(start_timestamp)
end_time = self.timestamp_to_seconds(end_timestamp)
# Use moviepy to cut both video and audio
video_clip = VideoFileClip(input_file).subclip(start_time, end_time)
video_clip.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True)
def main(self,input_video_path,question):
subtitle = self.transcribe_video(input_video_path,'medium')
text = subtitle['text']
answer = self.generate_contract(text,question)
subrip_text = self.results_to_sentence_srt(subtitle)
result = self.extract_timestamps_and_text(subrip_text)
start_time,end_time = self.start_end_timestamp(result,answer)
output_video_path = 'output_video.mp4'
self.cut_video(input_video_path, output_video_path, start_time, end_time)
return output_video_path
def gradio_interface(self):
with gr.Blocks() as demo:
gr.HTML("""<center><h1>Video Question Answering</h1></center>""")
with gr.Row():
video = gr.Video()
with gr.Row():
query = gr.Textbox("Query")
with gr.Row():
output_video = gr.Video()
query.submit(self.main,[video,query],output_video)
demo.launch(debug=True)
if __name__=="__main__":
video_qa = VideoQA()
video_qa.gradio_interface()