|
from stable_whisper import modify_model,results_to_word_srt, results_to_sentence_srt |
|
import whisper |
|
import pysrt |
|
import re |
|
import os |
|
from copy import deepcopy |
|
from typing import List |
|
import os |
|
from langchain import HuggingFaceHub, PromptTemplate, LLMChain |
|
from langchain.document_loaders import UnstructuredPDFLoader |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import word_tokenize |
|
from nltk import FreqDist |
|
from nltk.metrics import jaccard_distance |
|
|
|
from moviepy.video.io.VideoFileClip import VideoFileClip |
|
from moviepy.video.VideoClip import ImageClip |
|
from datetime import datetime |
|
import gradio as gr |
|
import nltk |
|
nltk.download('stopwords') |
|
nltk.download('punkt') |
|
|
|
huggingfacehub_api_token = os.getenv("HF_TOKEN") |
|
|
|
class VideoQA: |
|
def __init__(self): |
|
|
|
|
|
|
|
|
|
self.repo_id = "mistralai/Mistral-7B-Instruct-v0.1" |
|
self.llm = HuggingFaceHub( |
|
huggingfacehub_api_token=huggingfacehub_api_token, |
|
repo_id=self.repo_id, |
|
model_kwargs={"temperature": 0.2, "max_new_tokens": 800} |
|
) |
|
|
|
def load_model(self,model_selected): |
|
""" |
|
Load a pre-trained machine learning model specified by the `model_selected` parameter |
|
using the `whisper` library and modify it to output word timestamps. |
|
|
|
Parameters: |
|
----------- |
|
model_selected : str |
|
A string specifying the name of the pre-trained machine learning model to load. |
|
|
|
Returns: |
|
-------- |
|
model : object |
|
A modified version of the loaded pre-trained machine learning model that outputs |
|
timestamps for individual words. |
|
|
|
""" |
|
model = whisper.load_model(model_selected) |
|
modify_model(model) |
|
return model |
|
|
|
def whisper_result_to_srt(self,result): |
|
""" |
|
Convert the output of the Whisper speech recognition model into SubRip subtitle format. |
|
|
|
Parameters: |
|
----------- |
|
result : dict |
|
A dictionary containing the output of the Whisper speech recognition model, including word-level |
|
timestamps. |
|
|
|
Returns: |
|
-------- |
|
srt : str |
|
A string in SubRip subtitle format, containing the word-level transcriptions and timing information |
|
from the Whisper output. |
|
|
|
Notes: |
|
------ |
|
This function takes the output of the Whisper speech recognition model, which includes word-level timestamps |
|
for each segment of the input audio file, and converts it into SubRip subtitle format. The resulting subtitle |
|
file can be used to display captions or transcripts alongside a video recording of the original audio. |
|
""" |
|
text = [] |
|
for i,s in enumerate(result['segments']): |
|
text.append(str(i+1)) |
|
time_start = s['start'] |
|
hours, minutes, seconds = int(time_start/3600), (time_start/60) % 60, (time_start) % 60 |
|
timestamp_start = "%02d:%02d:%06.3f" % (hours, minutes, seconds) |
|
timestamp_start = timestamp_start.replace('.',',') |
|
time_end = s['end'] |
|
hours, minutes, seconds = int(time_end/3600), (time_end/60) % 60, (time_end) % 60 |
|
timestamp_end = "%02d:%02d:%06.3f" % (hours, minutes, seconds) |
|
timestamp_end = timestamp_end.replace('.',',') |
|
text.append(timestamp_start + " --> " + timestamp_end) |
|
text.append(s['text'].strip() + "\n") |
|
return "\n".join(text) |
|
|
|
|
|
def transcribe_video(self,vid, model_selected): |
|
""" |
|
Transcribe the audio in a video file using a pre-trained machine learning model and return the transcription |
|
and its corresponding timestamps in a subtitle format. |
|
|
|
Parameters: |
|
----------- |
|
vid : str |
|
A string specifying the path to the video file to be transcribed. |
|
model_selected : str |
|
A string specifying the name of the pre-trained machine learning model to use for transcription. |
|
|
|
Returns: |
|
-------- |
|
result : dict |
|
A dictionary containing the transcription and its corresponding timestamps in a subtitle format. |
|
|
|
""" |
|
model = self.load_model(model_selected) |
|
options = whisper.DecodingOptions(fp16=False) |
|
result = model.transcribe(vid, **options.__dict__) |
|
result['srt'] = self.whisper_result_to_srt(result) |
|
return result |
|
|
|
|
|
def to_srt(self,lines: List[dict], strip=False) -> str: |
|
""" |
|
lines: List[dict] |
|
[{start:<start-timestamp-of-text>, end:<end-timestamp-of-text>, text:<str-of-text>}, ...] |
|
""" |
|
|
|
def secs_to_hhmmss(secs): |
|
mm, ss = divmod(secs, 60) |
|
hh, mm = divmod(mm, 60) |
|
return f'{hh:0>2.0f}:{mm:0>2.0f}:{ss:0>6.3f}'.replace(".", ",") |
|
|
|
srt_str = '\n'.join( |
|
f'{i}\n' |
|
f'{secs_to_hhmmss(sub["start"])} --> {secs_to_hhmmss(sub["end"])}\n' |
|
f'{sub["text"].strip() if strip else sub["text"]}\n' |
|
for i, sub in enumerate(lines, 1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return srt_str |
|
|
|
def tighten_timestamps(self,res: dict, end_at_last_word=True, end_before_period=False, start_at_first_word=False) -> dict: |
|
res = deepcopy(res) |
|
for i in range(len(res['segments'])): |
|
if start_at_first_word: |
|
res['segments'][i]['start'] = res['segments'][i]['word_timestamps'][0]['timestamp'] |
|
if end_before_period and \ |
|
res['segments'][i]['word_timestamps'][-1] == '.' and \ |
|
len(res['segments'][i]['word_timestamps']) > 1: |
|
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-2]['timestamp'] |
|
elif end_at_last_word: |
|
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-1]['timestamp'] |
|
|
|
return res |
|
|
|
def results_to_sentence_srt(self,res: dict, |
|
end_at_last_word=False, |
|
end_before_period=False, |
|
start_at_first_word=False, |
|
strip=False): |
|
""" |
|
|
|
Parameters |
|
---------- |
|
res: dict |
|
results from modified model |
|
srt_path: str |
|
output path of srt |
|
end_at_last_word: bool |
|
set end-of-sentence to timestamp-of-last-token |
|
end_before_period: bool |
|
set end-of-sentence to timestamp-of-last-non-period-token |
|
start_at_first_word: bool |
|
set start-of-sentence to timestamp-of-first-token |
|
strip: bool |
|
perform strip() on each sentence |
|
|
|
""" |
|
strict = any((end_at_last_word, end_before_period, start_at_first_word)) |
|
segs = self.tighten_timestamps(res, |
|
end_at_last_word=end_at_last_word, |
|
end_before_period=end_before_period, |
|
start_at_first_word=start_at_first_word)['segments'] \ |
|
if strict else res['segments'] |
|
|
|
max_idx = len(segs) - 1 |
|
i = 1 |
|
while i <= max_idx: |
|
if not (segs[i]['end'] - segs[i]['start']): |
|
if segs[i - 1]['end'] == segs[i]['end']: |
|
segs[i - 1]['text'] += (' ' + segs[i]['text'].strip()) |
|
del segs[i] |
|
max_idx -= 1 |
|
continue |
|
else: |
|
segs[i]['start'] = segs[i - 1]['end'] |
|
i += 1 |
|
|
|
srt = self.to_srt(segs, strip=strip) |
|
return srt |
|
|
|
|
|
|
|
def extract_timestamps_and_text(self,input_text): |
|
timestamp_pattern = re.compile(r'(\d{2}:\d{2}:\d{2}.\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2}.\d{3})\n(.+)') |
|
|
|
matches = timestamp_pattern.findall(input_text) |
|
|
|
data = [] |
|
|
|
for match in matches: |
|
start_timestamp, end_timestamp, text = match |
|
data.append({ |
|
'start_timestamp': start_timestamp, |
|
'end_timestamp': end_timestamp, |
|
'text': text.strip() |
|
}) |
|
|
|
return data |
|
|
|
|
|
def generate_contract(self,text,question): |
|
|
|
|
|
template = """you are the german language and universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.your returning answer must in user's language.otherwise reply i don't know. |
|
extracted_text:{text} |
|
user_question:{question}""" |
|
|
|
prompt = PromptTemplate(template=template, input_variables=["text","question"]) |
|
llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm) |
|
|
|
result = llm_chain.run({"text":text,"question":question}) |
|
print() |
|
print() |
|
print("this is answer:",result) |
|
return result |
|
|
|
|
|
def preprocess_sentence(self,sentence): |
|
stop_words = set(stopwords.words('english')) |
|
words = word_tokenize(sentence.lower()) |
|
filtered_words = [word for word in words if word.isalnum() and word not in stop_words] |
|
return filtered_words |
|
|
|
def compute_similarity(self,sentence1, sentence2): |
|
words1 = self.preprocess_sentence(sentence1) |
|
words2 = self.preprocess_sentence(sentence2) |
|
|
|
freq_dist1 = FreqDist(words1) |
|
freq_dist2 = FreqDist(words2) |
|
|
|
jaccard = 1 - jaccard_distance(set(freq_dist1), set(freq_dist2)) |
|
|
|
return jaccard |
|
|
|
def find_most_similar(self,sentence_list, target_sentence): |
|
similarities = [self.compute_similarity(target_sentence, sentence) for sentence in sentence_list] |
|
|
|
|
|
most_similar_index = similarities.index(max(similarities)) |
|
|
|
|
|
return sentence_list[most_similar_index] |
|
|
|
|
|
def start_end_timestamp(self,result,answer): |
|
appended_text = [] |
|
|
|
for item in result: |
|
appended_text.append(item['text']) |
|
|
|
|
|
matched_sentence = self.find_most_similar(appended_text, answer) |
|
start_time="" |
|
end_time="" |
|
for entry in result: |
|
if matched_sentence in entry['text']: |
|
start_time = entry['start_timestamp'] |
|
end_time = entry['end_timestamp'] |
|
print(start_time+"\n"+end_time) |
|
return start_time,end_time |
|
|
|
|
|
|
|
def timestamp_to_seconds(self,timestamp): |
|
time_format = "%H:%M:%S,%f" |
|
dt = datetime.strptime(timestamp, time_format) |
|
return dt.hour * 3600 + dt.minute * 60 + dt.second + dt.microsecond / 1e6 |
|
|
|
def cut_video(self,input_file, output_file, start_timestamp, end_timestamp): |
|
|
|
start_time = self.timestamp_to_seconds(start_timestamp) |
|
end_time = self.timestamp_to_seconds(end_timestamp) |
|
|
|
|
|
video_clip = VideoFileClip(input_file).subclip(start_time, end_time) |
|
video_clip.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True) |
|
|
|
def main(self,input_video_path,question): |
|
|
|
subtitle = self.transcribe_video(input_video_path,'medium') |
|
text = subtitle['text'] |
|
answer = self.generate_contract(text,question) |
|
|
|
subrip_text = self.results_to_sentence_srt(subtitle) |
|
result = self.extract_timestamps_and_text(subrip_text) |
|
start_time,end_time = self.start_end_timestamp(result,answer) |
|
output_video_path = 'output_video.mp4' |
|
|
|
self.cut_video(input_video_path, output_video_path, start_time, end_time) |
|
return output_video_path |
|
|
|
def gradio_interface(self): |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("""<center><h1>Video Question Answering</h1></center>""") |
|
with gr.Row(): |
|
video = gr.Video() |
|
with gr.Row(): |
|
query = gr.Textbox("Query") |
|
with gr.Row(): |
|
output_video = gr.Video() |
|
|
|
query.submit(self.main,[video,query],output_video) |
|
demo.launch(debug=True) |
|
|
|
if __name__=="__main__": |
|
video_qa = VideoQA() |
|
video_qa.gradio_interface() |
|
|
|
|