job_potral_tool / app.py
karthikeyan-r's picture
Update app.py
396f400 verified
import os
from typing import List, Union, Tuple, Dict
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI as OpenAILLM
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import gradio as gr
from openai import AzureOpenAI
import matplotlib.pyplot as plt
import pandas as pd
import logging
from PyPDF2 import PdfReader
import re
import plotly.graph_objects as go
import csv
from langchain_openai import AzureChatOpenAI
from langchain_openai import AzureOpenAIEmbeddings
# Configure logging
logging.basicConfig(
filename='Resume_Analyzer.log', # You can adjust the log file name here
filemode='a',
format='[%(asctime)s] [%(levelname)s] [%(filename)s] [%(lineno)s:%(funcName)s()] %(message)s',
datefmt='%Y-%b-%d %H:%M:%S'
)
LOGGER = logging.getLogger(__name__)
log_level_env = 'INFO' # You can adjust the log level here
log_level_dict = {
'DEBUG': logging.DEBUG,
'INFO': logging.INFO,
'WARNING': logging.WARNING,
'ERROR': logging.ERROR,
'CRITICAL': logging.CRITICAL
}
if log_level_env in log_level_dict:
log_level = log_level_dict[log_level_env]
else:
log_level = log_level_dict['INFO']
LOGGER.setLevel(log_level)
class JobPotral:
def __init__(self) -> None:
"""
Initialize the JobPotral object.
Sets the OpenAI API key in the environment.
"""
self.client = AzureOpenAI(azure_deployment = "GPT-3")
self.answer = ""
def get_empty_state(self) -> dict:
"""
Get an empty state for the knowledge base.
Returns:
- dict: An empty state dictionary.
"""
LOGGER.info("Creating Empty Dictionary...")
return {"knowledge_base": None}
def create_knowledge_base(self, docs: List[str]) -> FAISS:
"""
Create a knowledge base from a set of documents.
Args:
- docs (list): List of documents to create a knowledge base from.
Returns:
- knowledge_base: The created knowledge base.
"""
try:
LOGGER.info("Creating Knowledge Base...")
# split into chunks
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=500, chunk_overlap=0, length_function=len
)
chunks = text_splitter.split_documents(docs)
# Create embeddings
embeddings = AzureOpenAIEmbeddings(
azure_deployment="text-embedding-3-large")
#create knowledge base
knowledge_base = FAISS.from_documents(chunks, embeddings)
#return knowledge base
return knowledge_base
except Exception as e:
LOGGER.error(f"Error creating knowledge base: {str(e)}")
raise
def upload_file(self, file_obj: gr.File) -> Tuple[str, Union[str, Dict[str, FAISS]]]:
"""
Upload a file and create a knowledge base.
Args:
- file_obj: File object representing the uploaded file.
Returns:
- tuple: Tuple containing file name and the knowledge base of given document.
"""
try:
# Log that the process of unstructuring files is starting
LOGGER.info("Unstructuring Files...")
# Initialize an UnstructuredFileLoader with the uploaded file and a loading strategy
loader = UnstructuredFileLoader(file_obj.name, strategy="fast")
# Load the document(s) using the file loader
docs = loader.load()
# Create a knowledge base from the loaded documents
knowledge_base = self.create_knowledge_base(docs)
# Return the file name and the knowledge base as a dictionary
return file_obj.name, {"knowledge_base": knowledge_base}
except Exception as e:
LOGGER.error(f"Error uploading file: {str(e)}")
raise
def answer_question(self, question: str, state: Dict[str, Union[None, Dict[str, FAISS]]], chat_history) -> str:
"""
Answer a question using the knowledge base.
Args:
- question (str): The question to answer.
- state (dict): The state containing the knowledge base.
Returns:
- str: The answer to the question.
"""
try:
# Log that the model is generating a response
LOGGER.info("Generating Responce From Model...")
# Access the knowledge base from the state
knowledge_base = state["knowledge_base"]
# Perform similarity search on the knowledge base for the given question
docs = knowledge_base.similarity_search(question)
# Initialize the OpenAILLM model
llm = AzureChatOpenAI(azure_deployment="GPT-3")
# Load a question-answering chain of models
chain = load_qa_chain(llm, chain_type="stuff")
# Run the question-answering chain on the input documents and question
response = chain.run(input_documents=docs, question=question)
# Append the question and response to the chat history
chat_history.append((question, response))
# Return an empty string and the updated chat history
return "", chat_history
except Exception as e:
# Log an error if an exception occurs during question answering
LOGGER.error(f"Error answering question: {str(e)}")
raise
def get_graph(self, file_path: str) -> Tuple[go.Figure, go.Figure, go.Figure]:
"""
Generate three types of charts based on data from a CSV file.
Parameters:
- file_path (str): The path to the CSV file.
Returns:
Tuple[go.Figure, go.Figure, go.Figure]: A tuple containing three Plotly figures (Bar chart, Pie chart, and Histogram).
"""
try:
LOGGER.info("Create graph for CSV file...")
# Read data from CSV file into a DataFrame
df = pd.read_csv(file_path.name)
# Chart 1: Bar chart - Number of members by domain
domain_counts = df['Domain'].value_counts()
domain_fig = go.Figure(go.Bar(x=domain_counts.index, y=domain_counts, marker_color='skyblue'))
domain_fig.update_layout(title='Number of Members by Domain', xaxis_title='Domain', yaxis_title='Number of Members')
# Chart 2: Pie chart - Distribution of working time
working_time_counts = df['Working Time'].value_counts()
working_time_fig = go.Figure(go.Pie(labels=working_time_counts.index, values=working_time_counts,
pull=[0.1, 0], marker_colors=['lightcoral', 'lightskyblue']))
working_time_fig.update_layout(title='Distribution of Working Time')
# Chart 3: Histogram - Distribution of career gaps
career_gap_fig = go.Figure(go.Histogram(x=df['Career Gap (years)'], nbinsx=20, marker_color='lightgreen',
marker_line_color='black', marker_line_width=1.2))
career_gap_fig.update_layout(title='Distribution of Career Gaps', xaxis_title='Career Gap (years)', yaxis_title='Number of Members')
return domain_fig, working_time_fig, career_gap_fig
except Exception as e:
# Handle exceptions
LOGGER.error(f"Error in get_graph: {str(e)}")
raise
def extract_text_from_pdf(self, pdf_path: str) -> str:
"""
Extracts text from a PDF file.
Args:
pdf_path (str): The path to the PDF file.
Returns:
str: The extracted text from the PDF.
"""
text = ''
try:
LOGGER.info("Extract text from pdf...")
# Load PDF document
pdf = PdfReader(pdf_path)
# Extract text from each page and pass it to the process_text function
for page_number in range(len(pdf.pages)):
try:
# Extract text from the page
page = pdf.pages[page_number]
# Extract page text
text += page.extract_text()
except Exception as e:
LOGGER.error(f"Error extracting text from page {page_number + 1}: {e}")
#return extracted text
return text
except Exception as e:
LOGGER.error(f"Error reading PDF file: {e}")
raise
def matching_percentage(self, resume_path: str, job_description_path: str) -> Tuple[str, go.Figure]:
"""
Assess the matching percentage between a resume and a job description using the OpenAI GPT-3.5-turbo model.
Parameters:
- resume_path (str): Path to the resume file (PDF format).
- job_description_path (str): Path to the job description file (PDF format).
Returns:
Tuple[str, go.Figure]: A tuple containing the matching result string and a Plotly figure.
"""
try:
LOGGER.info("Get matching percentage...")
# Extract text from the resume and job description PDFs
resume = self.extract_text_from_pdf(resume_path.name)
job_description = self.extract_text_from_pdf(job_description_path.name)
# Create a conversation for the OpenAI chat API
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"""Given the job description and the resume, assess the matching percentage to 100 and if 100 percentage not matched mention the remaining percentage with reason. **Job Description:**{job_description}**Resume:**{resume}
**Detailed Analysis:**
the result should be in this format:
Matched Percentage: [matching percentage].
Reason : [Mention Reason and keys from Job Description and Resume get this matched percentage.].
Skills To Improve : [Mention the skills How to improve and get match the given Job Description].
Keywords : [matched key words from Job Description and Resume].
"""}
]
# Call OpenAI GPT-3.5-turbo
chat_completion = self.client.chat.completions.create(
model = "ChatGPT",
messages = conversation,
max_tokens=500,
temperature=0
)
matched_result = chat_completion.choices[0].message.content
# Generate a Plotly figure for visualization
fig = self.get_ploty(matched_result)
return matched_result, fig
except Exception as e:
# Handle exceptions
LOGGER.error(f"Error in matching_percentage: {str(e)}")
raise
def get_ploty(self, result: str) -> go.Figure:
"""
Extracts matched percentage from the input result and creates a pie chart using Plotly.
Parameters:
- result (str): The input string containing information about the matched percentage.
Returns:
- go.Figure: Plotly figure object representing the pie chart.
"""
try:
LOGGER.info("Create Pie chart for Matched percentage...")
# Use regex with case-insensitive flag to extract the matched percentage
match_percentage = re.search(r'matched percentage: (\d+)%', result, re.IGNORECASE)
# If the specific format is found, extract the matched percentage
if match_percentage:
matched_percentage = int(match_percentage.group(1))
else:
# If the specific format is not found, try another regex pattern
match_percentage = re.search(r'(\d+)%', result, re.IGNORECASE)
matched_percentage = int(match_percentage.group(1))
# Creating a pie chart with plotly
labels = ['Matched', 'Not Matched']
values = [matched_percentage, 100 - matched_percentage]
fig = go.Figure(data=[go.Pie(labels=labels, values=values, pull=[0.1, 0])])
fig.update_layout(title='Matched Percentage')
return fig
except Exception as e:
# raise the exception
LOGGER.error(f"Error processing result:{str(e)}")
raise
def count_reviews(self) -> go.Figure:
"""
Count and visualize the distribution of positive, negative, and neutral reviews.
Returns:
go.Figure: Plotly figure showing the distribution of reviews.
"""
try:
LOGGER.info("Count reviews...")
# Extracted data from the reviews
data = self.answer
# Split the data into sections based on the review categories
sections = [section.strip() for section in data.split("\n\n")]
# Initialize counters for positive, neutral, and negative reviews
positive_count = 0
neutral_count = 0
negative_count = 0
# Initialize counters for positive, neutral, and negative reviews
for section in sections:
lines = section.split('\n')
if len(lines) > 1:
category = lines[0].strip()
reviews = lines[1:]
count = len(reviews)
# Update counts based on the review category
if "Positive" in category:
positive_count += count
elif "Suggestion" in category:
neutral_count += count
elif "Negative" in category:
negative_count += count
# Data for the bar graph
labels = ['Positive', 'Negative', 'Neutral']
counts = [positive_count, negative_count, neutral_count]
# Creating the bar graph using Plotly
fig = go.Figure(data=[go.Bar(x=labels, y=counts, marker=dict(color=['green', 'red', 'gray']))])
# Adding title and labels
fig.update_layout(title='Distribution of Reviews',
xaxis=dict(title='Sentiment'),
yaxis=dict(title='Number of Reviews'))
return fig
except Exception as e:
# Log and raise an error in case of an exception
LOGGER.error(f"Error in count_reviews: {e}")
raise
def csv_to_list(self, file_path: str) -> list:
"""
Read a CSV file and convert it to a list.
Args:
file_path (str): Path to the CSV file.
Returns:
list: List containing data from the CSV file.
"""
try:
LOGGER.info("Extract CSV...")
# Initialize an empty list to store CSV data
data_list = []
# Open the CSV file and read its contents
with open(file_path.name, 'r',newline='') as csv_file:
csv_reader = csv.reader(csv_file)
next(csv_reader, None) # Skip the header row
for row in csv_reader:
# Convert each row to a string and append to the list
data_list.append("".join(row))
return data_list
except Exception as e:
# Log and raise an error in case of an exception
LOGGER.error(f"Error in csv_to_list: {e}")
raise
def extract_top_reviews(self, file_path: str) -> tuple:
"""
Extract the top suggestion, positive, and negative reviews from a CSV file.
Args:
file_path (str): Path to the CSV file.
Returns:
tuple: Suggestion reviews, positive reviews, and negative reviews.
"""
try:
LOGGER.info("Extract top reviews...")
# Set the number of top reviews to extract
top_count = 5
# Split the reviews into suggestion, positive, and negative categories
suggestion_reviews,positive_reviews,negative_reviews = self.split_reviews(file_path)
# Extract the top suggestion reviews
reviews_list = suggestion_reviews.split("\n") # Assuming each review is on a new line
suggest_reviews = "\n\n ".join(reviews_list[:top_count])
# Extract the top positive reviews
reviews_list = positive_reviews.split("\n") # Assuming each review is on a new line
pos_reviews ="\n\n ".join(reviews_list[:top_count])
# Extract the top negative reviews
reviews_list = negative_reviews.split("\n") # Assuming each review is on a new line
neg_reviews = "\n\n ".join(reviews_list[:top_count])
return suggest_reviews,pos_reviews,neg_reviews
except Exception as e:
# Log and raise an error in case of an exception
LOGGER.error(f"Error in extract_top_reviews: {e}")
raise
def split_reviews(self, file_path: str) -> tuple:
"""
Split reviews into suggestion, positive, and negative categories using OpenAI API.
Args:
file_path (str): Path to the CSV file.
Returns:
tuple: Suggestion reviews, positive reviews, and negative reviews.
"""
try:
LOGGER.info("Classify reviews...")
# Convert CSV file to a list of reviews
reviews = self.csv_to_list(file_path)
prompt_template_ = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"""read and analyse to return suggestion reviews,postive reviews and negative reviews with label ***{reviews}***.
the result should be in this format:
Suggestion Reviews:
Positive Reviews:
Negative Reviews:"""}
]
# Construct the prompt for OpenAI API
# Call OpenAI API with the given prompt
response = self.client.chat.completions.create(
model="ChatGPT", # You can use a different engine
messages=prompt_template_,
max_tokens=200,
temperature = 0,
)
# Extract and return the generated text
self.answer += response.choices[0].message.content
# Split the generated text into suggestion, positive, and negative reviews
suggestion_reviews = self.answer.split("Suggestion Reviews:")[1].split("Positive Reviews:")[0].strip()
positive_reviews = self.answer.split("Positive Reviews:")[1].split("Negative Reviews:")[0].strip()
negative_reviews = self.answer.split("Negative Reviews:")[1].strip()
return suggestion_reviews,positive_reviews,negative_reviews
except Exception as e:
# Log and raise an error in case of an exception
LOGGER.error(f"Error in split_reviews: {e}")
raise
def file_name(self,upload_file:str) -> str:
"""
Get the name of the uploaded file.
Args:
upload_file: File object.
Returns:
str: File name.
"""
try:
# return file path
return upload_file.name
except Exception as e:
LOGGER.error(f"Error in file_name: {e}")
raise
def gradio_interface(self):
"""
Create a Gradio interface for the JobPotral.
"""
with gr.Blocks(css="style.css",theme='freddyaboulton/test-blue') as demo:
gr.HTML("""<center class="darkblue" text-align:center;padding:30px;'><center>
<center><h1 class ="center" style="color:#fff"></h1></center>
<br><center><h1 style="color:#fff">Job Potral Tool</h1></center>""")
# QA
state = gr.State(self.get_empty_state())
with gr.Tab("QA and Graph"):
with gr.Column(elem_id="col-container"):
gr.Markdown("**Upload your file**")
with gr.Row(elem_id="row-flex"):
with gr.Column(scale=0.90, min_width=160):
file_output = gr.File(elem_classes="filenameshow")
with gr.Column(scale=0.10, min_width=160):
upload_button = gr.UploadButton(
"Browse File", file_types=[".txt", ".pdf", ".doc", ".docx",".csv"],
elem_classes="filenameshow")
with gr.Row(elem_id="col-container"):
with gr.Column():
analyse_graph = gr.Button("Analyse Graph")
with gr.TabItem("Chatbot"):
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1, min_width=0):
chatbot = gr.Chatbot(label = "Resume QA")
msg = gr.Textbox(label = "Question")
clear = gr.ClearButton([msg, chatbot])
# analyse graph
with gr.TabItem("Graph"):
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
domain_graph = gr.Plot(label="Domain Graph")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
working_time_graph = gr.Plot(label="Working Time Graph")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
career_gap_graph = gr.Plot(label="Career Gap Graph")
# resume analyser
with gr.Tab("Resume Analyzer"):
with gr.Row(elem_id="col-container"):
with gr.Column(scale=0.55, min_width=150, ):
job_description = gr.File(label="Job Description", file_types = [".pdf",".txt"])
with gr.Column(scale=0.55, min_width=150):
resume = gr.File(label="Resume", file_types = [".pdf",".txt"])
with gr.Row(elem_id="col-container"):
with gr.Column(scale=0.80, min_width=150):
analyse_btn = gr.Button("Analyse")
with gr.Column(scale=0.20, min_width=150):
clear_btn = gr.ClearButton()
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
matched_result = gr.Textbox(label="Matched Result", lines=10)
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
pychart = gr.Plot(label="Matching Percentage Chart")
# review analyser
with gr.Tab("Reviews Analyzer"):
with gr.Row(elem_id="col-container"):
with gr.Column(scale=0.90, min_width=160):
file_output_review = gr.File(elem_classes="filenameshow")
with gr.Column(scale=0.10, min_width=160):
upload_button_review = gr.UploadButton(
"Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
elem_classes="filenameshow")
with gr.Row(elem_id="col-container"):
split_reviews_top_5_btn = gr.Button("Split TOP 5 Reviews ")
with gr.Row(elem_id="col-container"):
suggested_reviews = gr.Textbox(label="Suggested Reviews", lines=10)
postive_reviews =gr.Textbox(label="Positive Reviews", lines=10)
negative_reviews = gr.Textbox(label="Negative Reviews", lines=10)
with gr.Row(elem_id="col-container"):
sentiment_graph_btn = gr.Button("Sentiment Graph")
with gr.Row(elem_id="col-container"):
sentiment_graph = gr.Plot(label="Sentiment Analysis")
# QA
upload_button.upload(self.upload_file, upload_button, [file_output,state])
msg.submit(self.answer_question, [msg, state, chatbot], [msg, chatbot])
# analyse graph
analyse_graph.click(self.get_graph, upload_button, [domain_graph, working_time_graph, career_gap_graph])
# resume analyser
analyse_btn.click(self.matching_percentage, [resume,job_description], [matched_result, pychart])
# review analyser
upload_button_review.upload(self.file_name,upload_button_review,file_output_review)
sentiment_graph_btn.click(self.count_reviews,[],sentiment_graph)
split_reviews_top_5_btn.click(self.extract_top_reviews,upload_button_review,[suggested_reviews,postive_reviews,negative_reviews])
demo.launch(debug = True)
if __name__ == "__main__":
analyze = JobPotral()
analyze.gradio_interface()