File size: 8,789 Bytes
601068b
 
 
 
 
 
 
 
 
 
 
a143de4
601068b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9dbf06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8e979
 
f9dbf06
 
 
6d8e979
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.datasets import mnist
import cv2

# I/O image dimensions for display
DIMS = (100,100)
# Load the trained model
model = load_model('mnist_model.h5')

# Load MNIST examples
(x_train, y_train), (x_test, y_test) = mnist.load_data()
mnist_examples = [[x_test[i]] for i in range(10)]  # Select first 10 examples and format as nested list
# resize the examples 100 by 100
mnist_examples = [[cv2.resize(x_test[i], DIMS)] for i in range(10)]

# Function to preprocess the image
def preprocess_image(image):
    image = cv2.resize(image, (28, 28))  # Resize to 28x28 for model input
    image = np.array(image) / 255.0
    image = image.reshape(1, 28, 28, 1)
    return image

# Function to make predictions
def predict(image):
    image = preprocess_image(image)
    prediction = model.predict(image)
    predicted_label = np.argmax(prediction)
    return predicted_label, np.max(prediction)

# Function to compute gradients
def get_gradients(image, label):
    image = tf.convert_to_tensor(image.reshape((1, 28, 28, 1)), dtype=tf.float32)
    with tf.GradientTape() as tape:
        tape.watch(image)
        prediction = model(image)
        loss = tf.keras.losses.categorical_crossentropy([label], prediction)
    gradients = tape.gradient(loss, image)
    return gradients.numpy().reshape(28, 28)

# Function to progressively mask image and observe changes
def progressively_mask_image(image, steps=100, increment=5):
    image = preprocess_image(image).reshape(28, 28)
    label = np.argmax(model.predict(image.reshape(1, 28, 28, 1)))
    gradients = get_gradients(image, to_categorical(label, 10))

    modified_image = np.copy(image)
    original_prediction = model.predict(image.reshape(1, 28, 28, 1))
    original_label = np.argmax(original_prediction)

    for i in range(1, steps + 1):
        threshold = np.percentile(np.abs(gradients), 100 - i * increment)
        mask = np.abs(gradients) > threshold
        modified_image[mask] = 0
        modified_prediction = model.predict(modified_image.reshape(1, 28, 28, 1))
        predicted_label = np.argmax(modified_prediction)
        if predicted_label != original_label:
            break

    return cv2.resize(modified_image, DIMS), original_label, predicted_label

# Gradio interface functions
def gradio_predict(image):
    predicted_label, confidence = predict(image)
    return f"Predicted Label: {predicted_label}, Confidence: {confidence:.4f}"

def gradio_mask(image, steps, increment):
    modified_image, original_label, predicted_label = progressively_mask_image(image, steps, increment)
    return modified_image, f"Original Label: {original_label}, New Label: {predicted_label}"

class GradioInterface:
    def __init__(self):
        self.preloaded_examples = self.preload_examples()

    def preload_examples(self):
        preloaded = {}
        for model_name, example_dir in Config.EXAMPLES.items():
            examples = [os.path.join(example_dir, img) for img in os.listdir(example_dir)]
            preloaded[model_name] = examples
        return preloaded

    def create_interface(self):
        app_styles = """
        <style>
            /* Global Styles */
            body, #root {
                font-family: Helvetica, Arial, sans-serif;
                background-color: #1a1a1a;
                color: #fafafa;
            }
            /* Header Styles */
            .app-header {
                background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
                padding: 24px;
                border-radius: 8px;
                margin-bottom: 24px;
                text-align: center;
            }
            .app-title {
                font-size: 48px;
                margin: 0;
                color: #fafafa;
            }
            .app-subtitle {
                font-size: 24px;
                margin: 8px 0 16px;
                color: #fafafa;
            }
            .app-description {
                font-size: 16px;
                line-height: 1.6;
                opacity: 0.8;
                margin-bottom: 24px;
            }
            /* Button Styles */
            .publication-links {
                display: flex;
                justify-content: center;
                flex-wrap: wrap;
                gap: 8px;
                margin-bottom: 16px;
            }
            .publication-link {
                display: inline-flex;
                align-items: center;
                padding: 8px 16px;
                background-color: #333;
                color: #fff !important;
                text-decoration: none !important;
                border-radius: 20px;
                font-size: 14px;
                transition: background-color 0.3s;
            }
            .publication-link:hover {
                background-color: #555;
            }
            .publication-link i {
                margin-right: 8px;
            }
            /* Content Styles */
            .content-container {
                background-color: #2a2a2a;
                border-radius: 8px;
                padding: 24px;
                margin-bottom: 24px;
            }
            /* Image Styles */
            .image-preview img {
                max-width: 512px;
                max-height: 512px;  
                margin: 0 auto;
                border-radius: 4px;
                display: block;
                object-fit: contain;  
            }
            /* Control Styles */
            .control-panel {
                background-color: #333;
                padding: 16px;
                border-radius: 8px;
                margin-top: 16px;
            }
            /* Gradio Component Overrides */
            .gr-button {
                background-color: #4a4a4a;
                color: #fff;
                border: none;
                border-radius: 4px;
                padding: 8px 16px;
                cursor: pointer;
                transition: background-color 0.3s;
            }
            .gr-button:hover {
                background-color: #5a5a5a;
            }
            .gr-input, .gr-dropdown {
                background-color: #3a3a3a;
                color: #fff;
                border: 1px solid #4a4a4a;
                border-radius: 4px;
                padding: 8px;
            }
            .gr-form {
                background-color: transparent;
            }
            .gr-panel {
                border: none;
                background-color: transparent;
            }
            /* Override any conflicting styles from Bulma */
            .button.is-normal.is-rounded.is-dark {
                color: #fff !important;
                text-decoration: none !important;
            }
        </style>
        """

        header_html = f"""
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
        <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
        {app_styles}
        <div class="app-header">
            <h1 class="app-title">Attribution Based Confidence Metric for Neural Networks</h1>
            <h2 class="app-subtitle">Steven Fernandes, Ph.D.</h2>
        </div>
        """

        js_func = """
        function refresh() {
            const url = new URL(window.location);
            if (url.searchParams.get('__theme') !== 'dark') {
                url.searchParams.set('__theme', 'dark');
                window.location.href = url.href;
            }
        }
        """

        with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
            gr.HTML(header_html)
            with gr.Row(elem_classes="content-container"):
                with gr.Column():
                    input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
                    steps_input = gr.Slider(minimum=1, maximum=100, label="Steps", step=1, value=100)
                    increment_input = gr.Slider(minimum=1, maximum=20, label="Increment", step=1, value=5)
                with gr.Column():
                    result = gr.Image(label="Result", elem_classes="image-preview")
                    run_button = gr.Button("Run", elem_classes="gr-button")

            run_button.click(
                fn=gradio_mask,
                inputs=[input_image, steps_input, increment_input],
                outputs=[result, gr.Textbox(label="Prediction Details")],
            )

        return demo

def main():
    interface = GradioInterface()
    demo = interface.create_interface()
    demo.launch(debug=True)

if __name__ == "__main__":
    main()