Spaces:
Runtime error
Runtime error
File size: 3,847 Bytes
d047d28 17e58be da33654 d047d28 77efc8c 869288e 6dee790 869288e 625e1fa da33654 6dee790 869288e 6dee790 869288e 6dee790 da33654 6dee790 f5bddfa d047d28 0389d06 6dee790 0389d06 3528cb9 50043a1 20a03f1 3e587f4 50043a1 945386e 6dee790 869288e 6dee790 50043a1 869288e 3e587f4 0389d06 146f57d da33654 d047d28 869288e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
# import gradio as gr
# model1 = gr.load("models/Jonny001/NSFW_master")
# model2 = gr.load("models/Jonny001/Alita-v1")
# model3 = gr.load("models/lexa862/NSFWmodel")
# model4 = gr.load("models/Keltezaa/flux_pussy_NSFW")
# model5 = gr.load("models/prashanth970/flux-lora-uncensored")
# def generate_images(text, selected_model):
# if selected_model == "Model 1 (NSFW Master)":
# model = model1
# elif selected_model == "Model 2 (Alita)":
# model = model2
# elif selected_model == "Model 3 (Lexa NSFW)":
# model = model3
# elif selected_model == "Model 4 (Flux NSFW)":
# model = model4
# elif selected_model == "Model 5 (Lora Uncensored)":
# model = model5
# else:
# return "Invalid model selection."
# results = []
# for i in range(3):
# modified_text = f"{text} variation {i+1}"
# result = model(modified_text)
# results.append(result)
# return results
# interface = gr.Interface(
# fn=generate_images,
# inputs=[
# gr.Textbox(label="Type here your imagination:", placeholder="Type your prompt..."),
# gr.Radio(
# ["Model 1 (NSFW Master)", "Model 2 (Alita)", "Model 3 (Lexa NSFW)", "Model 4 (Flux NSFW)", "Model 5 (Lora Uncensored)"],
# label="Select Model (Try All Models & Get Different Results)",
# value="Model 1 (NSFW Master)",
# ),
# ],
# outputs=[
# gr.Image(label="Generated Image 1"),
# gr.Image(label="Generated Image 2"),
# gr.Image(label="Generated Image 3"),
# ],
# theme="Yntec/HaleyCH_Theme_Orange",
# description="⚠ Sorry for the inconvenience. The models are currently running on the CPU, which might affect performance. We appreciate your understanding.",
# cache_examples=False,
# )
# interface.launch()
import gradio as gr
from transformers import pipeline
import torch
# Maximize CPU usage
torch.set_num_threads(torch.get_num_threads() * 2)
# Load models using Hugging Face pipelines
model1 = pipeline("text-to-image", model="Jonny001/NSFW_master", device_map="auto")
model2 = pipeline("text-to-image", model="Jonny001/Alita-v1", device_map="auto")
model3 = pipeline("text-to-image", model="lexa862/NSFWmodel", device_map="auto")
model4 = pipeline("text-to-image", model="Keltezaa/flux_pussy_NSFW", device_map="auto")
model5 = pipeline("text-to-image", model="prashanth970/flux-lora-uncensored", device_map="auto")
# Function to generate images
def generate_images(text, selected_model):
models = {
"Model 1 (NSFW Master)": model1,
"Model 2 (Alita)": model2,
"Model 3 (Lexa NSFW)": model3,
"Model 4 (Flux NSFW)": model4,
"Model 5 (Lora Uncensored)": model5,
}
model = models.get(selected_model, model1)
results = []
for i in range(3):
modified_text = f"{text} variation {i+1}"
result = model(modified_text)
results.append(result)
return results
# Gradio interface
interface = gr.Interface(
fn=generate_images,
inputs=[
gr.Textbox(label="Type here your imagination:", placeholder="Type your prompt..."),
gr.Radio(
["Model 1 (NSFW Master)", "Model 2 (Alita)", "Model 3 (Lexa NSFW)", "Model 4 (Flux NSFW)", "Model 5 (Lora Uncensored)"],
label="Select Model (Try All Models & Get Different Results)",
value="Model 1 (NSFW Master)",
),
],
outputs=[
gr.Image(label="Generated Image 1"),
gr.Image(label="Generated Image 2"),
gr.Image(label="Generated Image 3"),
],
theme="Yntec/HaleyCH_Theme_Orange",
description="⚠ Models are running on CPU for optimized performance. Your patience is appreciated!",
cache_examples=False,
)
# Launch the interface
interface.launch()
|