File size: 5,070 Bytes
2642322
 
 
 
 
 
 
 
 
4a945b5
2642322
 
 
 
 
 
 
4a945b5
 
 
2642322
4a945b5
 
 
 
2642322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# %%
import json
import multiprocessing as mp
import os
from dataclasses import dataclass, asdict

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from fastapi import FastAPI
from pyproj import Proj

import adloc

from adloc.eikonal2d import init_eikonal2d
from adloc.sacloc2d import ADLoc
from adloc.utils import invert_location, invert_location_iter

app = FastAPI()


@app.get("/")
def greet_json():
    return {"Hello": "World!"}


@app.post("/predict/")
def predict(picks: dict, stations: dict, config: dict):
    picks = picks["data"]
    stations = stations["data"]
    picks = pd.DataFrame(picks)
    picks["phase_time"] = pd.to_datetime(picks["phase_time"])
    stations = pd.DataFrame(stations)
    picks_, events_ = run_adloc(picks, stations, config)
    picks_ = picks_.to_dict(orient="records")
    events_ = events_.to_dict(orient="records")

    return {"picks": picks_, "events": events_}


def set_config(region="ridgecrest"):


    config = {
        "min_picks": 8,
        "min_picks_ratio": 0.2,
        "max_residual_time": 1.0,
        "max_residual_amplitude": 1.0,
        "min_score": 0.6,
        "min_s_picks": 2,
        "min_p_picks": 2,
        "use_amplitude": False,
    }


    # ## Domain
    if region.lower() == "ridgecrest":
        config.update(
            {
                "region": "ridgecrest",
                "minlongitude": -118.004,
                "maxlongitude": -117.004,
                "minlatitude": 35.205,
                "maxlatitude": 36.205,
                "mindepth_km": 0.0,
                "maxdepth_km": 30.0,
            }
        )


    lon0 = (config["minlongitude"] + config["maxlongitude"]) / 2
    lat0 = (config["minlatitude"] + config["maxlatitude"]) / 2
    proj = Proj(f"+proj=sterea +lon_0={lon0} +lat_0={lat0}  +units=km")
    xmin, ymin = proj(config["minlongitude"], config["minlatitude"])
    xmax, ymax = proj(config["maxlongitude"], config["maxlatitude"])
    zmin, zmax = config["mindepth_km"], config["maxdepth_km"]
    xlim_km = (xmin, xmax)
    ylim_km = (ymin, ymax)
    zlim_km = (zmin, zmax)

    config.update(
        {
            "xlim_km": xlim_km,
            "ylim_km": ylim_km,
            "zlim_km": zlim_km,
            "proj": proj,
        }
    )

    ## Eikonal for 1D velocity model
    zz = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 30.0]
    vp = [4.746, 4.793, 4.799, 5.045, 5.721, 5.879, 6.504, 6.708, 6.725, 7.800]
    vs = [2.469, 2.470, 2.929, 2.930, 3.402, 3.403, 3.848, 3.907, 3.963, 4.500]
    h = 0.3

    vel = {"Z": zz, "P": vp, "S": vs}
    eikonal = {
        "vel": vel,
        "h": h,
        "xlim_km": xlim_km,
        "ylim_km": ylim_km,
        "zlim_km": zlim_km,
    }
    eikonal = init_eikonal2d(eikonal)
    config["eikonal"] = eikonal

    config["bfgs_bounds"] = (
        (xlim_km[0] - 1, xlim_km[1] + 1),  # x
        (ylim_km[0] - 1, ylim_km[1] + 1),  # y
        (0, zlim_km[1] + 1),  # z
        (None, None),  # t
    )

    config["event_index"] = 0

    return config

config = set_config()


# %%
def run_adloc(picks, stations, config_):


    # %%
    config.update(config_)
    
    proj = config["proj"]

    # %%
    stations[["x_km", "y_km"]] = stations.apply(
        lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
    )
    stations["z_km"] = stations["elevation_m"].apply(lambda x: -x / 1e3)


    # %%
    mapping_phase_type_int = {"P": 0, "S": 1}
    picks["phase_type"] = picks["phase_type"].map(mapping_phase_type_int)
    if "phase_amplitude" in picks.columns:
        picks["phase_amplitude"] = picks["phase_amplitude"].apply(lambda x: np.log10(x) + 2.0)  # convert to log10(cm/s)

    # %%
    # reindex in case the index does not start from 0 or is not continuous
    stations["idx_sta"] = np.arange(len(stations))
    picks = picks.merge(stations[["station_id", "idx_sta"]], on="station_id")
    picks["idx_eve"] = config["event_index"]

    # %%
    estimator = ADLoc(config, stations=stations[["x_km", "y_km", "z_km"]].values, eikonal=config["eikonal"])

    # %%
    picks, events = invert_location_iter(picks, stations, config, estimator, events_init=None, iter=0)

    if (picks is None) or (events is None):
        return None, None
        
    # %%
    if "event_index" not in events.columns:
        events["event_index"] = events.merge(picks[["idx_eve", "event_index"]], on="idx_eve")["event_index"]
    events[["longitude", "latitude"]] = events.apply(
        lambda x: pd.Series(proj(x["x_km"], x["y_km"], inverse=True)), axis=1
    )
    events["depth_km"] = events["z_km"]
    events.drop(["idx_eve", "x_km", "y_km", "z_km"], axis=1, inplace=True, errors="ignore")
    events.sort_values(["time"], inplace=True)

    picks.rename({"mask": "adloc_mask", "residual_s": "adloc_residual_s"}, axis=1, inplace=True)
    picks["phase_type"] = picks["phase_type"].map({0: "P", 1: "S"})
    picks.drop(["idx_eve", "idx_sta"], axis=1, inplace=True, errors="ignore")
    picks.sort_values(["phase_time"], inplace=True)

    return picks, events