Spaces:
Running
Running
File size: 5,794 Bytes
81c99dc 127cbe6 81c99dc 127cbe6 81c99dc 127cbe6 81c99dc 127cbe6 81c99dc 127cbe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
from collections import defaultdict, namedtuple
from datetime import datetime, timedelta
from json import dumps
from typing import Any, AnyStr, Dict, List, NamedTuple, Union
import numpy as np
import requests
import scipy
import tensorflow as tf
from fastapi import FastAPI
from kafka import KafkaProducer
from model import UNet
from pydantic import BaseModel
from scipy.interpolate import interp1d
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
JSONObject = Dict[AnyStr, Any]
JSONArray = List[Any]
JSONStructure = Union[JSONArray, JSONObject]
app = FastAPI()
X_SHAPE = [3000, 1, 3]
SAMPLING_RATE = 100
# load model
model = UNet(mode="pred")
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=sess_config)
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
latest_check_point = tf.train.latest_checkpoint(f"{PROJECT_ROOT}/model/190614-104802")
print(f"restoring model {latest_check_point}")
saver.restore(sess, latest_check_point)
# Kafak producer
use_kafka = False
# BROKER_URL = 'localhost:9092'
# BROKER_URL = 'my-kafka-headless:9092'
try:
print("Connecting to k8s kafka")
BROKER_URL = "quakeflow-kafka-headless:9092"
producer = KafkaProducer(
bootstrap_servers=[BROKER_URL],
key_serializer=lambda x: dumps(x).encode("utf-8"),
value_serializer=lambda x: dumps(x).encode("utf-8"),
)
use_kafka = True
print("k8s kafka connection success!")
except BaseException:
print("k8s Kafka connection error")
try:
print("Connecting to local kafka")
producer = KafkaProducer(
bootstrap_servers=["localhost:9092"],
key_serializer=lambda x: dumps(x).encode("utf-8"),
value_serializer=lambda x: dumps(x).encode("utf-8"),
)
use_kafka = True
print("local kafka connection success!")
except BaseException:
print("local Kafka connection error")
def normalize_batch(data, window=200):
"""
data: nbn, nf, nt, 2
"""
assert len(data.shape) == 4
shift = window // 2
nbt, nf, nt, nimg = data.shape
## std in slide windows
data_pad = np.pad(data, ((0, 0), (0, 0), (window // 2, window // 2), (0, 0)), mode="reflect")
t = np.arange(0, nt + shift - 1, shift, dtype="int") # 201 => 0, 100, 200
# print(f"nt = {nt}, nt+window//2 = {nt+window//2}")
std = np.zeros([nbt, len(t)])
mean = np.zeros([nbt, len(t)])
for i in range(std.shape[1]):
std[:, i] = np.std(data_pad[:, :, i * shift : i * shift + window, :], axis=(1, 2, 3))
mean[:, i] = np.mean(data_pad[:, :, i * shift : i * shift + window, :], axis=(1, 2, 3))
std[:, -1], mean[:, -1] = std[:, -2], mean[:, -2]
std[:, 0], mean[:, 0] = std[:, 1], mean[:, 1]
## normalize data with interplated std
t_interp = np.arange(nt, dtype="int")
std_interp = interp1d(t, std, kind="slinear")(t_interp)
std_interp[std_interp == 0] = 1.0
mean_interp = interp1d(t, mean, kind="slinear")(t_interp)
data = (data - mean_interp[:, np.newaxis, :, np.newaxis]) / std_interp[:, np.newaxis, :, np.newaxis]
if len(t) > 3: ##need to address this normalization issue in training
data /= 2.0
return data
def get_prediction(meta):
FS = 100
NPERSEG = 30
NFFT = 60
vec = np.array(meta.vec) # [batch, nt, chn]
nbt, nt, nch = vec.shape
vec = np.transpose(vec, [0, 2, 1]) # [batch, chn, nt]
vec = np.reshape(vec, [nbt * nch, nt]) ## [batch * chn, nt]
if np.mod(vec.shape[-1], 3000) == 1: # 3001=>3000
vec = vec[..., :-1]
if meta.dt != 0.01:
t = np.linspace(0, 1, len(vec))
t_interp = np.linspace(0, 1, np.int(np.around(len(vec) * meta.dt * FS)))
vec = interp1d(t, vec, kind="slinear")(t_interp)
# sos = scipy.signal.butter(4, 0.1, 'high', fs=100, output='sos') ## for stability of long sequence
# vec = scipy.signal.sosfilt(sos, vec)
f, t, tmp_signal = scipy.signal.stft(vec, fs=FS, nperseg=NPERSEG, nfft=NFFT, boundary="zeros")
noisy_signal = np.stack([tmp_signal.real, tmp_signal.imag], axis=-1) # [batch * chn, nf, nt, 2]
noisy_signal[np.isnan(noisy_signal)] = 0
noisy_signal[np.isinf(noisy_signal)] = 0
X_input = normalize_batch(noisy_signal)
feed = {model.X: X_input, model.drop_rate: 0, model.is_training: False}
preds = sess.run(model.preds, feed_dict=feed)
_, denoised_signal = scipy.signal.istft(
(noisy_signal[..., 0] + noisy_signal[..., 1] * 1j) * preds[..., 0],
fs=FS,
nperseg=NPERSEG,
nfft=NFFT,
boundary="zeros",
)
# _, denoised_noise = scipy.signal.istft(
# (noisy_signal[..., 0] + noisy_signal[..., 1] * 1j) * preds[..., 1],
# fs=FS,
# nperseg=NPERSEG,
# nfft=NFFT,
# boundary='zeros',
# )
denoised_signal = np.reshape(denoised_signal, [nbt, nch, nt])
denoised_signal = np.transpose(denoised_signal, [0, 2, 1])
result = meta.copy()
result.vec = denoised_signal.tolist()
return result
class Data(BaseModel):
# id: Union[List[str], str]
# timestamp: Union[List[str], str]
# vec: Union[List[List[List[float]]], List[List[float]]]
id: List[str]
timestamp: List[str]
vec: List[List[List[float]]]
dt: float = 0.01
@app.post("/predict")
def predict(data: Data):
denoised = get_prediction(data)
return denoised
@app.get("/healthz")
def healthz():
return {"status": "ok"}
@app.get("/")
def read_root():
return {"Hello": "DeepDenoiser!"}
|