zhuwq0 commited on
Commit
127cbe6
·
1 Parent(s): 7a982d6
Files changed (1) hide show
  1. deepdenoiser/app.py +10 -8
deepdenoiser/app.py CHANGED
@@ -6,15 +6,14 @@ from typing import Any, AnyStr, Dict, List, NamedTuple, Union
6
 
7
  import numpy as np
8
  import requests
 
9
  import tensorflow as tf
10
  from fastapi import FastAPI
11
  from kafka import KafkaProducer
 
12
  from pydantic import BaseModel
13
- import scipy
14
  from scipy.interpolate import interp1d
15
 
16
- from model import UNet
17
-
18
  tf.compat.v1.disable_eager_execution()
19
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
20
  PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
@@ -105,7 +104,6 @@ def normalize_batch(data, window=200):
105
 
106
 
107
  def get_prediction(meta):
108
-
109
  FS = 100
110
  NPERSEG = 30
111
  NFFT = 60
@@ -125,7 +123,7 @@ def get_prediction(meta):
125
 
126
  # sos = scipy.signal.butter(4, 0.1, 'high', fs=100, output='sos') ## for stability of long sequence
127
  # vec = scipy.signal.sosfilt(sos, vec)
128
- f, t, tmp_signal = scipy.signal.stft(vec, fs=FS, nperseg=NPERSEG, nfft=NFFT, boundary='zeros')
129
  noisy_signal = np.stack([tmp_signal.real, tmp_signal.imag], axis=-1) # [batch * chn, nf, nt, 2]
130
  noisy_signal[np.isnan(noisy_signal)] = 0
131
  noisy_signal[np.isinf(noisy_signal)] = 0
@@ -139,7 +137,7 @@ def get_prediction(meta):
139
  fs=FS,
140
  nperseg=NPERSEG,
141
  nfft=NFFT,
142
- boundary='zeros',
143
  )
144
  # _, denoised_noise = scipy.signal.istft(
145
  # (noisy_signal[..., 0] + noisy_signal[..., 1] * 1j) * preds[..., 1],
@@ -169,7 +167,6 @@ class Data(BaseModel):
169
 
170
  @app.post("/predict")
171
  def predict(data: Data):
172
-
173
  denoised = get_prediction(data)
174
 
175
  return denoised
@@ -177,4 +174,9 @@ def predict(data: Data):
177
 
178
  @app.get("/healthz")
179
  def healthz():
180
- return {"status": "ok"}
 
 
 
 
 
 
6
 
7
  import numpy as np
8
  import requests
9
+ import scipy
10
  import tensorflow as tf
11
  from fastapi import FastAPI
12
  from kafka import KafkaProducer
13
+ from model import UNet
14
  from pydantic import BaseModel
 
15
  from scipy.interpolate import interp1d
16
 
 
 
17
  tf.compat.v1.disable_eager_execution()
18
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
19
  PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
 
104
 
105
 
106
  def get_prediction(meta):
 
107
  FS = 100
108
  NPERSEG = 30
109
  NFFT = 60
 
123
 
124
  # sos = scipy.signal.butter(4, 0.1, 'high', fs=100, output='sos') ## for stability of long sequence
125
  # vec = scipy.signal.sosfilt(sos, vec)
126
+ f, t, tmp_signal = scipy.signal.stft(vec, fs=FS, nperseg=NPERSEG, nfft=NFFT, boundary="zeros")
127
  noisy_signal = np.stack([tmp_signal.real, tmp_signal.imag], axis=-1) # [batch * chn, nf, nt, 2]
128
  noisy_signal[np.isnan(noisy_signal)] = 0
129
  noisy_signal[np.isinf(noisy_signal)] = 0
 
137
  fs=FS,
138
  nperseg=NPERSEG,
139
  nfft=NFFT,
140
+ boundary="zeros",
141
  )
142
  # _, denoised_noise = scipy.signal.istft(
143
  # (noisy_signal[..., 0] + noisy_signal[..., 1] * 1j) * preds[..., 1],
 
167
 
168
  @app.post("/predict")
169
  def predict(data: Data):
 
170
  denoised = get_prediction(data)
171
 
172
  return denoised
 
174
 
175
  @app.get("/healthz")
176
  def healthz():
177
+ return {"status": "ok"}
178
+
179
+
180
+ @app.get("/")
181
+ def read_root():
182
+ return {"Hello": "DeepDenoiser!"}