zhuwq0's picture
init
81c99dc
import argparse
import logging
import multiprocessing
import os
import time
from functools import partial
import numpy as np
import tensorflow as tf
from tqdm import tqdm
from data_reader import DataReader_pred, normalize_batch
from model import UNet
from util import *
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
def read_args():
"""Returns args"""
parser = argparse.ArgumentParser()
parser.add_argument("--format", default="numpy", type=str, help="Input data format: numpy or mseed")
parser.add_argument("--batch_size", default=20, type=int, help="Batch size")
parser.add_argument("--output_dir", default="output", help="Output directory (default: output)")
parser.add_argument("--model_dir", default=None, help="Checkpoint directory (default: None)")
parser.add_argument("--sampling_rate", default=100, type=int, help="sampling rate of pred data")
parser.add_argument("--data_dir", default="./Dataset/pred/", help="Input file directory")
parser.add_argument("--data_list", default="./Dataset/pred.csv", help="Input csv file")
parser.add_argument("--plot_figure", action="store_true", help="If plot figure")
parser.add_argument("--save_signal", action="store_true", help="If save denoised signal")
parser.add_argument("--save_noise", action="store_true", help="If save denoised noise")
args = parser.parse_args()
return args
def pred_fn(args, data_reader, figure_dir=None, result_dir=None, log_dir=None):
current_time = time.strftime("%y%m%d-%H%M%S")
if log_dir is None:
log_dir = os.path.join(args.log_dir, "pred", current_time)
logging.info("Pred log: %s" % log_dir)
# logging.info("Dataset size: {}".format(data_reader.num_data))
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if args.plot_figure:
figure_dir = os.path.join(log_dir, 'figures')
os.makedirs(figure_dir, exist_ok=True)
if args.save_signal or args.save_noise:
result_dir = os.path.join(log_dir, 'results')
os.makedirs(result_dir, exist_ok=True)
with tf.compat.v1.name_scope('Input_Batch'):
data_batch = data_reader.dataset(args.batch_size)
# model = UNet(input_batch=data_batch, mode='pred')
model = UNet(mode='pred')
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
# sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
logging.info(f"restoring models: {latest_check_point}")
saver.restore(sess, latest_check_point)
if args.plot_figure:
num_pool = multiprocessing.cpu_count()
else:
num_pool = 2
multiprocessing.set_start_method('spawn')
pool = multiprocessing.Pool(num_pool)
for _ in tqdm(range(0, data_reader.n_signal, args.batch_size), desc="Pred"):
X_batch, fname_batch, t0_batch = sess.run(data_batch)
nbt, nch, nst, nf, nt, nimg = X_batch.shape
X_batch_ = np.reshape(X_batch, [nbt * nch * nst, nf, nt, nimg])
X_batch_ = normalize_batch(X_batch_)
preds_batch = sess.run(
model.preds,
feed_dict={model.X: X_batch_, model.drop_rate: 0, model.is_training: False},
)
preds_batch = np.reshape(preds_batch, [nbt, nch, nst, nf, nt, preds_batch.shape[-1]])
# preds_batch, X_batch, ratio_batch, fname_batch = sess.run(
# [model.preds, data_batch[0], data_batch[1], data_batch[2]],
# feed_dict={model.drop_rate: 0, model.is_training: False},
# )
if args.save_signal or args.save_noise:
save_results(
preds_batch,
X_batch,
fname=[x.decode() for x in fname_batch],
t0=[x.decode() for x in t0_batch],
save_signal=args.save_signal,
save_noise=args.save_noise,
result_dir=result_dir,
)
if args.plot_figure:
pool.starmap(
partial(
plot_figures,
figure_dir=figure_dir,
),
zip(preds_batch, X_batch, [x.decode() for x in fname_batch]),
)
pool.close()
return 0
def main(args):
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
with tf.compat.v1.name_scope('create_inputs'):
data_reader = DataReader_pred(
format=args.format, signal_dir=args.data_dir, signal_list=args.data_list, sampling_rate=args.sampling_rate
)
logging.info("Dataset Size: {}".format(data_reader.n_signal))
pred_fn(args, data_reader, log_dir=args.output_dir)
return 0
if __name__ == '__main__':
args = read_args()
main(args)