File size: 7,221 Bytes
d67d34a c431e93 d67d34a c431e93 d67d34a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
from json import dumps
from typing import Dict, List, Union
import numpy as np
import pandas as pd
from fastapi import FastAPI
from gamma.utils import association
from kafka import KafkaProducer
from pydantic import BaseModel
from pyproj import Proj
# Kafak producer
use_kafka = False
try:
print("Connecting to k8s kafka")
BROKER_URL = "quakeflow-kafka-headless:9092"
# BROKER_URL = "34.83.137.139:9094"
producer = KafkaProducer(
bootstrap_servers=[BROKER_URL],
key_serializer=lambda x: dumps(x).encode("utf-8"),
value_serializer=lambda x: dumps(x).encode("utf-8"),
)
use_kafka = True
print("k8s kafka connection success!")
except BaseException:
print("k8s Kafka connection error")
try:
print("Connecting to local kafka")
producer = KafkaProducer(
bootstrap_servers=["localhost:9092"],
key_serializer=lambda x: dumps(x).encode("utf-8"),
value_serializer=lambda x: dumps(x).encode("utf-8"),
)
use_kafka = True
print("local kafka connection success!")
except BaseException:
print("local Kafka connection error")
print(f"Kafka status: {use_kafka}")
app = FastAPI()
PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
STATION_CSV = os.path.join(PROJECT_ROOT, "tests/stations_hawaii.csv")
# STATION_CSV = os.path.join(PROJECT_ROOT, "tests/stations.csv") ## ridgecrest
def default_config(config):
if "degree2km" not in config:
config["degree2km"] = 111.195
if "use_amplitude" not in config:
config["use_amplitude"] = True
if "use_dbscan" not in config:
config["use_dbscan"] = True
if "dbscan_eps" not in config:
config["dbscan_eps"] = 30.0
if "dbscan_min_samples" not in config:
config["dbscan_min_samples"] = 3
if "method" not in config:
config["method"] = "BGMM"
if "oversample_factor" not in config:
config["oversample_factor"] = 5
if "min_picks_per_eq" not in config:
config["min_picks_per_eq"] = 10
if "max_sigma11" not in config:
config["max_sigma11"] = 2.0
if "max_sigma22" not in config:
config["max_sigma22"] = 1.0
if "max_sigma12" not in config:
config["max_sigma12"] = 1.0
if "dims" not in config:
config["dims"] = ["x(km)", "y(km)", "z(km)"]
return config
## set config
config = {"xlim_degree": [-156.32, -154.32], "ylim_degree": [18.39, 20.39], "z(km)": [0, 41]} ## hawaii
# config = {'xlim_degree': [-118.004, -117.004], 'ylim_degree': [35.205, 36.205], "z(km)": [0, 41]} ## ridgecrest
config = default_config(config)
config["center"] = [np.mean(config["xlim_degree"]), np.mean(config["ylim_degree"])]
config["x(km)"] = (np.array(config["xlim_degree"]) - config["center"][0]) * config["degree2km"]
config["y(km)"] = (np.array(config["ylim_degree"]) - config["center"][1]) * config["degree2km"]
config["bfgs_bounds"] = [list(config[x]) for x in config["dims"]] + [[None, None]]
for k, v in config.items():
print(f"{k}: {v}")
## read stations
stations = pd.read_csv(STATION_CSV, delimiter="\t")
stations = stations.rename(columns={"station": "id"})
stations["x(km)"] = stations["longitude"].apply(lambda x: (x - config["center"][0]) * config["degree2km"])
stations["y(km)"] = stations["latitude"].apply(lambda x: (x - config["center"][1]) * config["degree2km"])
stations["z(km)"] = stations["elevation(m)"].apply(lambda x: -x / 1e3)
print(stations)
class Data(BaseModel):
picks: List[Dict[str, Union[float, str]]]
stations: List[Dict[str, Union[float, str]]]
config: Dict[str, Union[List[float], List[int], List[str], float, int, str]]
class Pick(BaseModel):
picks: List[Dict[str, Union[float, str]]]
def run_gamma(picks, config, stations):
proj = Proj(f"+proj=sterea +lon_0={config['center'][0]} +lat_0={config['center'][1]} +units=km")
stations[["x(km)", "y(km)"]] = stations.apply(
lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
)
stations["z(km)"] = stations["elevation(m)"].apply(lambda x: -x / 1e3)
catalogs, assignments = association(picks, stations, config, 0, config["method"])
catalogs = pd.DataFrame(
catalogs,
columns=["time"]
+ config["dims"]
+ ["magnitude", "sigma_time", "sigma_amp", "cov_time_amp", "event_index", "gamma_score"],
)
catalogs[["longitude", "latitude"]] = catalogs.apply(
lambda x: pd.Series(proj(longitude=x["x(km)"], latitude=x["y(km)"], inverse=True)), axis=1
)
catalogs["depth(m)"] = catalogs["z(km)"].apply(lambda x: x * 1e3)
assignments = pd.DataFrame(assignments, columns=["pick_index", "event_index", "gamma_score"])
picks_gamma = picks.join(assignments.set_index("pick_index")).fillna(-1).astype({"event_index": int})
return catalogs, picks_gamma
@app.post("/predict_stream")
def predict(data: Pick):
picks = pd.DataFrame(data.picks)
if len(picks) == 0:
return {"catalog": [], "picks": []}
catalogs, picks_gamma = run_gamma(data, config, stations)
if use_kafka:
print("Push events to kafka...")
for event in catalogs.to_dict(orient="records"):
producer.send("gmma_events", key=event["time"], value=event)
return {"catalog": catalogs.to_dict(orient="records"), "picks": picks_gamma.to_dict(orient="records")}
@app.post("/predict")
def predict(data: Data):
picks = pd.DataFrame(data.picks)
if len(picks) == 0:
return {"catalog": [], "picks": []}
stations = pd.DataFrame(data.stations)
if len(stations) == 0:
return {"catalog": [], "picks": []}
assert "latitude" in stations
assert "longitude" in stations
assert "elevation(m)" in stations
config = data.config
config = default_config(config)
if "xlim_degree" not in config:
config["xlim_degree"] = (stations["longitude"].min(), stations["longitude"].max())
if "ylim_degree" not in config:
config["ylim_degree"] = (stations["latitude"].min(), stations["latitude"].max())
if "center" not in config:
config["center"] = [np.mean(config["xlim_degree"]), np.mean(config["ylim_degree"])]
if "x(km)" not in config:
config["x(km)"] = (
(np.array(config["xlim_degree"]) - config["center"][0])
* config["degree2km"]
* np.cos(np.deg2rad(config["center"][1]))
)
if "y(km)" not in config:
config["y(km)"] = (np.array(config["ylim_degree"]) - config["center"][1]) * config["degree2km"]
if "z(km)" not in config:
config["z(km)"] = (0, 41)
if "bfgs_bounds" not in config:
config["bfgs_bounds"] = [list(config[x]) for x in config["dims"]] + [[None, None]]
catalogs, picks_gamma = run_gamma(picks, config, stations)
if use_kafka:
print("Push events to kafka...")
for event in catalogs.to_dict(orient="records"):
producer.send("gamma_events", key=event["time"], value=event)
return {"catalog": catalogs.to_dict(orient="records"), "picks": picks_gamma.to_dict(orient="records")}
@app.get("/healthz")
def healthz():
return {"status": "ok"}
|