File size: 10,829 Bytes
762cb7d
 
 
e18737c
fc49e89
 
54299ef
 
fc49e89
 
54299ef
 
 
c1582fd
 
54299ef
fc49e89
c1582fd
54299ef
fc49e89
c1582fd
 
 
 
 
fc49e89
 
 
 
 
 
 
 
 
 
 
7c57f68
54299ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406aa8d
c1582fd
 
54299ef
fc49e89
 
54299ef
 
 
 
 
 
 
 
fc49e89
 
 
 
 
54299ef
 
 
 
 
 
 
c1582fd
54299ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20e8385
 
54299ef
 
 
 
 
c1582fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54299ef
 
 
c1582fd
54299ef
 
 
 
 
 
 
 
 
 
 
 
 
 
fc49e89
 
c1582fd
fc49e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54299ef
fc49e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1582fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc49e89
 
 
 
 
 
c1582fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc49e89
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import subprocess
subprocess.run('pip install flash-attn==2.7.0.post2 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import spaces
import os
import re
import logging
from typing import List, Any
from threading import Thread

import torch
import gradio as gr
from transformers import AutoModelForCausalLM, TextIteratorStreamer
from moviepy.editor import VideoFileClip
from PIL import Image

model_name = 'AIDC-AI/Ovis2-16B'

use_thread = False

IMAGE_MAX_PARTITION = 16

VIDEO_FRAME_NUMS = 32
VIDEO_MAX_PARTITION = 1

# load model
model = AutoModelForCausalLM.from_pretrained(model_name,
                                             torch_dtype=torch.bfloat16,
                                             multimodal_max_length=8192,
                                             trust_remote_code=True).to(device='cuda')
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
image_placeholder = '<image>'
cur_dir = os.path.dirname(os.path.abspath(__file__))

logging.getLogger("httpx").setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def initialize_gen_kwargs():
    return {
        "max_new_tokens": 1536,
        "do_sample": False,
        "top_p": None,
        "top_k": None,
        "temperature": None,
        "repetition_penalty": 1.05,
        "eos_token_id": model.generation_config.eos_token_id,
        "pad_token_id": text_tokenizer.pad_token_id,
        "use_cache": True
    }

def submit_chat(chatbot, text_input):
    response = ''
    chatbot.append((text_input, response))
    return chatbot ,''

@spaces.GPU
def ovis_chat(chatbot: List[List[str]], image_input: Any, video_input: Any):
    conversations, model_inputs = prepare_inputs(chatbot, image_input, video_input)
    gen_kwargs = initialize_gen_kwargs()

    with torch.inference_mode():
        generate_func = lambda: model.generate(**model_inputs, **gen_kwargs, streamer=streamer)
        
        if use_thread:
            thread = Thread(target=generate_func)
            thread.start()
        else:
            generate_func()

        response = ""
        for new_text in streamer:
            response += new_text
            chatbot[-1][1] = response
            yield chatbot

        if use_thread:
            thread.join()

    log_conversation(chatbot)

    
def prepare_inputs(chatbot: List[List[str]], image_input: Any,  video_input: Any):
    # conversations = [{
    #     "from": "system",
    #     "value": "You are a helpful assistant, and your task is to provide reliable and structured responses to users."
    # }]
    conversations= []

    for query, response in chatbot[:-1]:
        conversations.extend([
            {"from": "human", "value": query},
            {"from": "gpt", "value": response}
        ])
    
    last_query = chatbot[-1][0].replace(image_placeholder, '')
    conversations.append({"from": "human", "value": last_query})

    max_partition = IMAGE_MAX_PARTITION
    
    if image_input is not None:
        for conv in conversations:
            if conv["from"] == "human":
                conv["value"] = f'{image_placeholder}\n{conv["value"]}'
                break
        max_partition = IMAGE_MAX_PARTITION
        image_input = [image_input]
    
    if video_input is not None:
        for conv in conversations:
            if conv["from"] == "human":
                conv["value"] = f'{image_placeholder}\n' * VIDEO_FRAME_NUMS + f'{conv["value"]}'
                break
        # extract video frames here
        with VideoFileClip(video_input) as clip:
            total_frames = int(clip.fps * clip.duration)
            if total_frames <= VIDEO_FRAME_NUMS:
                sampled_indices = range(total_frames)
            else:
                stride = total_frames / VIDEO_FRAME_NUMS
                sampled_indices = [min(total_frames - 1, int((stride * i + stride * (i + 1)) / 2)) for i in range(VIDEO_FRAME_NUMS)]
            frames = [clip.get_frame(index / clip.fps) for index in sampled_indices]
            frames = [Image.fromarray(frame, mode='RGB') for frame in frames]
        image_input = frames
        max_partition = VIDEO_MAX_PARTITION

    logger.info(conversations)
    
    prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, image_input, max_partition=max_partition)
    attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
    
    model_inputs = {
        "inputs": input_ids.unsqueeze(0).to(device=model.device),
        "attention_mask": attention_mask.unsqueeze(0).to(device=model.device),
        "pixel_values": [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] if image_input is not None else [None]
    }
    
    return conversations, model_inputs

def log_conversation(chatbot):
    logger.info("[OVIS_CONV_START]")
    [print(f'Q{i}:\n {request}\nA{i}:\n {answer}') for i, (request, answer) in enumerate(chatbot, 1)]
    logger.info("[OVIS_CONV_END]")

def clear_chat():
    return [], None, "", None

with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
    svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
    <span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
    <span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span>
</p>
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
"""

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }, {
        "left": "\\begin{alignat}",
        "right": "\\end{alignat}",
        "display": True
    }, {
        "left": "\\begin{gather}",
        "right": "\\end{gather}",
        "display": True
    }, {
        "left": "\\begin{CD}",
        "right": "\\end{CD}",
        "display": True
    }, {
        "left": "\\[",
        "right": "\\]",
        "display": True
    }]

text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False)
with gr.Blocks(title=model_name.split('/')[-1], theme=gr.themes.Ocean()) as demo:
    gr.HTML(html)
    with gr.Row():
        with gr.Column(scale=3):
            input_type = gr.Radio(choices=["image + prompt", "video + prompt"], label="Select input type:", value="image + prompt", elem_classes="my_radio")

            image_input = gr.Image(label="image", height=350, type="pil", visible=True)
            video_input = gr.Video(label="video", height=350, format='mp4', visible=False)
            with gr.Column(visible=True) as image_examples_col:
                image_examples = gr.Examples(
                    examples=[
                        [f"{cur_dir}/examples/ovis2_math0.jpg", "Each face of the polyhedron shown is either a triangle or a square. Each square borders 4 triangles, and each triangle borders 3 squares. The polyhedron has 6 squares. How many triangles does it have?\n\nProvide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."],
                        [f"{cur_dir}/examples/ovis2_math1.jpg", "A large square touches another two squares, as shown in the picture. The numbers inside the smaller squares indicate their areas. What is the area of the largest square?\n\nProvide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."],
                        [f"{cur_dir}/examples/ovis2_figure0.png", "Explain this model."],
                        [f"{cur_dir}/examples/ovis2_figure1.png", "Organize the notes about GRPO in the figure."],
                        [f"{cur_dir}/examples/ovis2_multi0.jpg", "Posso avere un frappuccino e un caffè americano di taglia M? Quanto costa in totale?"],
                    ],
                    inputs=[image_input, text_input]
                )

            def update_visibility_on_example(video_input, text_input):
                return (gr.update(visible=True), text_input)
            
            with gr.Column(visible=False) as video_examples_col:
                video_examples = gr.Examples(
                    examples=[
                        [f"{cur_dir}/examples/video_demo_1.mp4", "Describe the video."]
                    ],
                    inputs=[video_input, text_input],
                    fn = update_visibility_on_example,
                    run_on_click = True,
                    outputs=[video_input, text_input]
                )

        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
            text_input.render()
            with gr.Row():
                send_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear", variant="secondary")
                
        def update_input_and_clear(selected):
            if selected == "image + prompt":
                visibility_updates = (gr.update(visible=True), gr.update(visible=False), 
                                      gr.update(visible=True), gr.update(visible=False))
            else:
                visibility_updates = (gr.update(visible=False), gr.update(visible=True), 
                                      gr.update(visible=False), gr.update(visible=True))
            clear_chat_outputs = clear_chat()
            return visibility_updates + clear_chat_outputs

        input_type.change(fn=update_input_and_clear, inputs=input_type, 
                        outputs=[image_input, video_input, image_examples_col, video_examples_col, chatbot, image_input, text_input, video_input])

    send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input, video_input],chatbot)
    submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input, video_input],chatbot)
    clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input, video_input])

demo.launch()