File size: 4,411 Bytes
0687bfd
 
 
 
 
 
9eab5bd
 
 
 
 
 
 
0687bfd
 
 
 
 
9eab5bd
0687bfd
 
9eab5bd
 
 
 
 
 
0687bfd
9eab5bd
 
 
0687bfd
 
9eab5bd
0687bfd
9eab5bd
0687bfd
9eab5bd
 
 
0687bfd
9eab5bd
 
 
 
0687bfd
 
 
 
 
9eab5bd
0687bfd
 
9eab5bd
0687bfd
 
 
 
9eab5bd
0687bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
9eab5bd
0687bfd
9eab5bd
 
 
 
0bb735b
9eab5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0687bfd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import streamlit as st
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import io

def main():
    # 1. Sidebar for Dropdown, Buttons, and Instructions
    st.sidebar.title("AI Energy Score Label Generator")
    st.sidebar.write("### Instructions:")
    st.sidebar.write("1. Select a model from the dropdown.")
    st.sidebar.write("2. Review the label preview.")
    st.sidebar.write("3. Download the label as a PNG.")
    st.sidebar.markdown("[Learn more about AI Energy Scores](https://example.com)")

    # 2. Read Data from CSV
    try:
        data_df = pd.read_csv("data.csv")
    except FileNotFoundError:
        st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.")
        return

    # 3. Ensure the CSV has required columns
    required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"]
    for col in required_columns:
        if col not in data_df.columns:
            st.sidebar.error(f"The CSV file must contain a column named '{col}'.")
            return

    # 4. Create a dropdown list based on unique values in the 'model' column
    model_options = data_df["model"].unique().tolist()
    selected_model = st.sidebar.selectbox("Select a Model:", model_options)

    # 5. Filter the data for the selected model
    model_data = data_df[data_df["model"] == selected_model].iloc[0]

    # 6. Dynamically select the background image based on the score
    try:
        score = int(model_data["score"])  # Convert to int to avoid issues
        background_path = f"{score}.png"  # E.g., "1.png", "2.png"
        background = Image.open(background_path).convert("RGBA")
    except FileNotFoundError:
        st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.")
        background = Image.open("default_background.png").convert("RGBA")
    except ValueError:
        st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
        return

    # 7. Overlay the data on the image
    generated_label = create_label(background, model_data)

    # 8. Display the generated label in the main area
    st.image(generated_label, caption="Generated Label Preview")

    # 9. Provide a download button in the sidebar
    img_buffer = io.BytesIO()
    generated_label.save(img_buffer, format="PNG")
    img_buffer.seek(0)

    st.sidebar.download_button(
        label="Download Label as PNG",
        data=img_buffer,
        file_name="AIEnergyScore.png",
        mime="image/png"
    )

def create_label(background_image, model_data):
    """
    This function takes a background image and a row (model_data) from the CSV,
    then draws text on the image. Finally, returns the modified image object.
    """
    label_img = background_image.convert("RGBA")
    draw = ImageDraw.Draw(label_img)

    # Load the Inter variable font
    try:
        inter_font_path = "Inter-VariableFont_opsz,wght.ttf"
        title_font = ImageFont.truetype(inter_font_path, 16, layout_engine=ImageFont.LAYOUT_RAQM)
        details_font = ImageFont.truetype(inter_font_path, 12, layout_engine=ImageFont.LAYOUT_RAQM)
        energy_font = ImageFont.truetype(inter_font_path, 14, layout_engine=ImageFont.LAYOUT_RAQM)
    except Exception as e:
        st.error(f"Font loading failed: {e}")
        return label_img

    # Define positions for the text groups (easy to tweak!)
    title_x, title_y = 20, 20  # Position for title group
    details_x, details_y = 300, 20  # Position for details group
    energy_x, energy_y = 150, 400  # Position for energy group

    # Group 1: Title (Left-Justified)
    draw.text((title_x, title_y), f"Model: {model_data['model']}", font=title_font, fill="black")
    draw.text((title_x, title_y + 25), f"Provider: {model_data['provider']}", font=title_font, fill="black")

    # Group 2: Details (Right-Justified)
    details_lines = [
        f"Date: {model_data['date']}",
        f"Task: {model_data['task']}",
        f"Hardware: {model_data['hardware']}"
    ]
    for i, line in enumerate(details_lines):
        draw.text((details_x, details_y + i * 20), line, font=details_font, fill="black", anchor="ra")

    # Group 3: Energy (Bottom-Center)
    energy_text = f"Energy: {model_data['energy']}"
    draw.text((energy_x, energy_y), energy_text, font=energy_font, fill="black")

    return label_img

if __name__ == "__main__":
    main()