Spaces:
Running
Running
File size: 4,411 Bytes
0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0687bfd 9eab5bd 0bb735b 9eab5bd 0687bfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import streamlit as st
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import io
def main():
# 1. Sidebar for Dropdown, Buttons, and Instructions
st.sidebar.title("AI Energy Score Label Generator")
st.sidebar.write("### Instructions:")
st.sidebar.write("1. Select a model from the dropdown.")
st.sidebar.write("2. Review the label preview.")
st.sidebar.write("3. Download the label as a PNG.")
st.sidebar.markdown("[Learn more about AI Energy Scores](https://example.com)")
# 2. Read Data from CSV
try:
data_df = pd.read_csv("data.csv")
except FileNotFoundError:
st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.")
return
# 3. Ensure the CSV has required columns
required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"]
for col in required_columns:
if col not in data_df.columns:
st.sidebar.error(f"The CSV file must contain a column named '{col}'.")
return
# 4. Create a dropdown list based on unique values in the 'model' column
model_options = data_df["model"].unique().tolist()
selected_model = st.sidebar.selectbox("Select a Model:", model_options)
# 5. Filter the data for the selected model
model_data = data_df[data_df["model"] == selected_model].iloc[0]
# 6. Dynamically select the background image based on the score
try:
score = int(model_data["score"]) # Convert to int to avoid issues
background_path = f"{score}.png" # E.g., "1.png", "2.png"
background = Image.open(background_path).convert("RGBA")
except FileNotFoundError:
st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.")
background = Image.open("default_background.png").convert("RGBA")
except ValueError:
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
return
# 7. Overlay the data on the image
generated_label = create_label(background, model_data)
# 8. Display the generated label in the main area
st.image(generated_label, caption="Generated Label Preview")
# 9. Provide a download button in the sidebar
img_buffer = io.BytesIO()
generated_label.save(img_buffer, format="PNG")
img_buffer.seek(0)
st.sidebar.download_button(
label="Download Label as PNG",
data=img_buffer,
file_name="AIEnergyScore.png",
mime="image/png"
)
def create_label(background_image, model_data):
"""
This function takes a background image and a row (model_data) from the CSV,
then draws text on the image. Finally, returns the modified image object.
"""
label_img = background_image.convert("RGBA")
draw = ImageDraw.Draw(label_img)
# Load the Inter variable font
try:
inter_font_path = "Inter-VariableFont_opsz,wght.ttf"
title_font = ImageFont.truetype(inter_font_path, 16, layout_engine=ImageFont.LAYOUT_RAQM)
details_font = ImageFont.truetype(inter_font_path, 12, layout_engine=ImageFont.LAYOUT_RAQM)
energy_font = ImageFont.truetype(inter_font_path, 14, layout_engine=ImageFont.LAYOUT_RAQM)
except Exception as e:
st.error(f"Font loading failed: {e}")
return label_img
# Define positions for the text groups (easy to tweak!)
title_x, title_y = 20, 20 # Position for title group
details_x, details_y = 300, 20 # Position for details group
energy_x, energy_y = 150, 400 # Position for energy group
# Group 1: Title (Left-Justified)
draw.text((title_x, title_y), f"Model: {model_data['model']}", font=title_font, fill="black")
draw.text((title_x, title_y + 25), f"Provider: {model_data['provider']}", font=title_font, fill="black")
# Group 2: Details (Right-Justified)
details_lines = [
f"Date: {model_data['date']}",
f"Task: {model_data['task']}",
f"Hardware: {model_data['hardware']}"
]
for i, line in enumerate(details_lines):
draw.text((details_x, details_y + i * 20), line, font=details_font, fill="black", anchor="ra")
# Group 3: Energy (Bottom-Center)
energy_text = f"Energy: {model_data['energy']}"
draw.text((energy_x, energy_y), energy_text, font=energy_font, fill="black")
return label_img
if __name__ == "__main__":
main()
|