Wtzwho commited on
Commit
157a5fc
Β·
verified Β·
1 Parent(s): c094b20

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -1
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Prometh-MOEM-V.01 Model Demo
3
  emoji: πŸ‘
4
  colorFrom: red
5
  colorTo: pink
@@ -10,3 +10,58 @@ language:
10
  - en
11
  ---
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Prometh-MOEM-V.01 Model Showcase
3
  emoji: πŸ‘
4
  colorFrom: red
5
  colorTo: pink
 
10
  - en
11
  ---
12
 
13
+ # Prometh-MOEM-V.01 Model Card πŸ‘
14
+
15
+ **Prometh-MOEM-V.01** is a pioneering Mixture of Experts (MoE) model, blending the capabilities of multiple foundational models to enhance performance across a variety of tasks. This model leverages the collective strengths of its components, achieving unparalleled accuracy, speed, and versatility.
16
+
17
+ ## πŸš€ Model Sources and Components
18
+
19
+ This MoE model amalgamates specialized models including:
20
+
21
+ - [Wtzwho/Prometh-merge-test2](https://huggingface.co/Wtzwho/Prometh-merge-test2)
22
+ - [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
23
+ - [Wtzwho/Prometh-merge-test3](https://huggingface.co/Wtzwho/Prometh-merge-test3)
24
+ - [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B)
25
+
26
+ ## 🌟 Key Features
27
+
28
+ - **Enhanced Performance**: Tailored for peak accuracy and efficiency.
29
+ - **Versatility**: Exceptionally adaptable across a wide range of NLP tasks.
30
+ - **State-of-the-Art Integration**: Incorporates the latest in AI research for effective model integration.
31
+
32
+ ## πŸ“ˆ Application Areas
33
+
34
+ Prometh-MOEM-V.01 excels in:
35
+
36
+ - Text generation
37
+ - Sentiment analysis
38
+ - Language translation
39
+ - Question answering
40
+
41
+ ## πŸ’» Usage Instructions
42
+
43
+ To utilize Prometh-MOEM-V.01 in your projects:
44
+
45
+ ```python
46
+ pip install -qU transformers bitsandbytes accelerate
47
+
48
+ from transformers import AutoTokenizer, pipeline
49
+ import torch
50
+
51
+ model = "Wtzwho/Prometh-MOEM-V.01"
52
+ tokenizer = AutoTokenizer.from_pretrained(model)
53
+
54
+ # Setup pipeline
55
+ pipeline = pipeline(
56
+ "text-generation",
57
+ model=model,
58
+ model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
59
+ )
60
+
61
+ # Example query
62
+ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
63
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
+
65
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
66
+ print(outputs[0]["generated_text"])
67
+ ```