Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Prometh-MOEM-V.01 Model
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
@@ -10,3 +10,58 @@ language:
|
|
10 |
- en
|
11 |
---
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Prometh-MOEM-V.01 Model Showcase
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
|
|
10 |
- en
|
11 |
---
|
12 |
|
13 |
+
# Prometh-MOEM-V.01 Model Card π
|
14 |
+
|
15 |
+
**Prometh-MOEM-V.01** is a pioneering Mixture of Experts (MoE) model, blending the capabilities of multiple foundational models to enhance performance across a variety of tasks. This model leverages the collective strengths of its components, achieving unparalleled accuracy, speed, and versatility.
|
16 |
+
|
17 |
+
## π Model Sources and Components
|
18 |
+
|
19 |
+
This MoE model amalgamates specialized models including:
|
20 |
+
|
21 |
+
- [Wtzwho/Prometh-merge-test2](https://huggingface.co/Wtzwho/Prometh-merge-test2)
|
22 |
+
- [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
23 |
+
- [Wtzwho/Prometh-merge-test3](https://huggingface.co/Wtzwho/Prometh-merge-test3)
|
24 |
+
- [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B)
|
25 |
+
|
26 |
+
## π Key Features
|
27 |
+
|
28 |
+
- **Enhanced Performance**: Tailored for peak accuracy and efficiency.
|
29 |
+
- **Versatility**: Exceptionally adaptable across a wide range of NLP tasks.
|
30 |
+
- **State-of-the-Art Integration**: Incorporates the latest in AI research for effective model integration.
|
31 |
+
|
32 |
+
## π Application Areas
|
33 |
+
|
34 |
+
Prometh-MOEM-V.01 excels in:
|
35 |
+
|
36 |
+
- Text generation
|
37 |
+
- Sentiment analysis
|
38 |
+
- Language translation
|
39 |
+
- Question answering
|
40 |
+
|
41 |
+
## π» Usage Instructions
|
42 |
+
|
43 |
+
To utilize Prometh-MOEM-V.01 in your projects:
|
44 |
+
|
45 |
+
```python
|
46 |
+
pip install -qU transformers bitsandbytes accelerate
|
47 |
+
|
48 |
+
from transformers import AutoTokenizer, pipeline
|
49 |
+
import torch
|
50 |
+
|
51 |
+
model = "Wtzwho/Prometh-MOEM-V.01"
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
53 |
+
|
54 |
+
# Setup pipeline
|
55 |
+
pipeline = pipeline(
|
56 |
+
"text-generation",
|
57 |
+
model=model,
|
58 |
+
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
|
59 |
+
)
|
60 |
+
|
61 |
+
# Example query
|
62 |
+
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
|
63 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
64 |
+
|
65 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
66 |
+
print(outputs[0]["generated_text"])
|
67 |
+
```
|