A_B / app.py
shiyegao
init
1cc3b0d
raw
history blame
9.35 kB
import os
import time
import py3Dmol
import gradio as gr
import numpy as np
import torch
import esm
from io import BytesIO
import esm.inverse_folding
import requests
# import util
# from gearnet import dataset, model
# from gearnet.dataset import bio_load_pdb
from tqdm import tqdm
from torchdrug import core, models, tasks, datasets, utils, data
from torchdrug.utils import comm
import sys
import glob
import math
import pprint
import random
def get_pdb(seq):
print(f'[LOG] Obataining pdb files: {seq}.')
# model = esm.pretrained.esmfold_v1()
# model = model.eval().cuda()
# with torch.no_grad():
# pdb = model.infer_pdb(sequence)
url = 'https://api.esmatlas.com/foldSequence/v1/pdb/'
r = requests.post(url, data=seq)
pdb = r.text
return pdb
def get_score(transform, task, cfg, seq):
print(f'[LOG] Predicting scores: {seq}.')
pdb = get_pdb(seq)
outpath = "data/demo/tmp_get_score.pdb"
with open(outpath, "w") as f:
f.write(pdb)
pdb_files = [outpath]
device = torch.device(cfg.gpu)
# task = task.cuda(device)
task.eval()
batch_size = cfg.get("batch_size", 1)
preds = []
for i in tqdm(range(0, len(pdb_files), batch_size)):
proteins = []
for pdb_file in pdb_files[i:i+batch_size]:
protein, sequence = bio_load_pdb(pdb_file)
proteins.append(protein)
protein = data.Protein.pack(proteins)
# protein = protein.cuda(device)
batch = {"graph": protein}
batch = transform(batch)
with torch.no_grad():
pred = task.predict(batch)
for j, value in enumerate(pred.cpu().unbind()):
name = os.path.basename(pdb_files[i+j])[:-4]
preds.append((name, value.item()))
preds = sorted(preds, key=lambda x: -x[-1])
print(preds)
return preds[0][1], get_3dview(pdb)
def get_3dview(pdb):
view = py3Dmol.view(width=500, height=500)
view.addModel(pdb, "pdb")
view.setStyle({'cartoon': {'color': 'spectrum'}})
# view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}})
# view.zoomTo()
output = view._make_html().replace("'", '"')
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def display_pdb(sequence):
# function to display pdb in py3dmol
view = py3Dmol.view(width=500, height=500)
view.addModel(get_pdb(sequence), "pdb")
view.setStyle({'cartoon': {'color': 'spectrum'}})
# view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}})
view.zoomTo()
output = view._make_html().replace("'", '"')
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def display_pdb_by_pdb(pdb):
# function to display pdb in py3dmol
view = py3Dmol.view(width=500, height=500)
view.addModel(pdb, "pdb")
view.setStyle({'cartoon': {'color': 'spectrum'}})
# view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}})
view.zoomTo()
output = view._make_html().replace("'", '"')
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def sample_seq(sequence, chain='A',num_samples=20,temperature=1):
pdbfile="data/demo/tmp_sample_seq_singlechain.pdb"
with open(pdbfile, "w") as f:
f.write(get_pdb(sequence))
model, alphabet = esm.pretrained.esm_if1_gvp4_t16_142M_UR50()
model = model.eval()
if torch.cuda.is_available():
model = model.cuda()
args, vars = util.parse_args()
cfg = util.load_config(args.config, context=vars)
seed = args.seed
torch.manual_seed(seed + comm.get_rank())
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if args.multichain:
structure = esm.inverse_folding.util.load_structure(pdbfile)
coords, native_seqs = esm.inverse_folding.multichain_util.extract_coords_from_complex(structure)
native_seq = native_seqs[chain]
print('[LOG] Sampling multichain. Native sequence loaded from structure file:', native_seq)
else:
coords, native_seq = esm.inverse_folding.util.load_coords(pdbfile, chain)
print('[LOG] Sampling singlechain. Native sequence loaded from structure file:', native_seq)
# for get_score
dataset = core.Configurable.load_config_dict(cfg.dataset)
task = core.Configurable.load_config_dict(cfg.task)
task.preprocess(dataset, None, None)
transform = core.Configurable.load_config_dict(cfg.transform)
if cfg.get("checkpoint") is not None:
cfg.checkpoint = os.path.expanduser(cfg.checkpoint)
pretrained_dict = torch.load(cfg.checkpoint, map_location=torch.device('cpu'))['model']
model_dict = task.state_dict()
task.load_state_dict(pretrained_dict)
res = ""
seq_list = []
i = 0
while i < num_samples:
if args.multichain:
sampled_seq = esm.inverse_folding.multichain_util.sample_sequence_in_complex(
model, coords, chain, temperature=temperature)
else:
sampled_seq = model.sample(coords, temperature=temperature, device=torch.device('cpu'))
print(f'[LOG] Sampling sequence: {sampled_seq}.')
# score, view3d = get_score(transform, task, cfg, sampled_seq)
# i += 1
try:
score, view3d = get_score(transform, task, cfg, sampled_seq)
print(score)
i += 1
except ValueError as ve:
print(ve)
continue
seq_list.append([score, sampled_seq, view3d])
if len(seq_list) == 1:
yield str(i)+" / " + str(num_samples), seq_list[0][1], None, None, seq_list[0][2], None, None, seq_list[0][0], None, None
elif len(seq_list) == 2:
seq_list = sorted(seq_list, key=lambda x: x[0])
yield str(i)+" / " + str(num_samples), seq_list[1][1], seq_list[0][1], None, seq_list[1][2], seq_list[0][2], None, seq_list[1][0], seq_list[0][0], None
else:
seq_list = sorted(seq_list, key=lambda x: x[0])[-3:]
yield str(i)+" / "+ str(num_samples), seq_list[2][1], seq_list[1][1], seq_list[0][1], seq_list[2][2], seq_list[1][2], seq_list[0][2], seq_list[2][0], seq_list[1][0], seq_list[0][0]
def show_gif():
path = 'output'
pdb_files = sorted(os.listdir(path), key=lambda x: int(x.split('_')[1]))
num = len(pdb_files)
step = 1
i = 0
while True:
if i > num:
break
step = int(torch.tensor(i+3).log().item())
time.sleep(0.3)
p = os.path.join(path, pdb_files[i])
with open(p,'r') as f:
f_pdb = f.readlines()
i += step
yield display_pdb_by_pdb(''.join(f_pdb)), pdb_files[i]
if __name__ == "__main__":
title = "Artificial Intelligence Generated Protein"
css = "footer {visibility: hidden}"
with gr.Blocks(title=title, css=css) as demo:
output_viewer = gr.HTML()
with gr.Row():
gif = gr.HTML()
it = gr.Textbox(label="Iteraton")
btn3 = gr.Button("GIF")
btn3.click(show_gif, [], [gif, it])
demo.queue()
demo.launch(show_api=False, server_name="0.0.0.0", share=True)
# demo.launch(show_api=False, share=True)