GlyphControl / ldm /data /textcaps_control_2.py
yyk19's picture
first trial
0902a5f
raw
history blame
17.5 kB
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
# from datasets import load_dataset
import os
from collections import defaultdict
import cv2
import albumentations
import random
from ldm.data.util import new_process_im, imagenet_process_im, process_wb_im, vqgan_process_im
import re
from annotator.render_images import render_glyph_image
class TextCapsCLDataset(Dataset):
def __init__(self,
img_folder,
caption_file,
ocr_file,
image_transforms=[],
first_stage_key = "jpg", cond_stage_key = "txt",
OneCapPerImage = False,
default_caption="",
ext="jpg",
postprocess=None,
return_paths=False,
filter_data=False,
filter_words=["sign", "poster"],
filter_token_num = False,
max_token_num = 3,
no_hint = False,
hint_folder = None,
control_key = "hint",
imagenet_proc = False,
imagenet_proc_config = None,
do_new_proc = True,
new_proc_config = None,
new_ocr_info = True,
rendered_txt_in_caption = False,
caption_choices = ["original", "w_rend_text", "wo_rend_text"],
caption_drop_rates = [0.1, 0.5, 0.1],
add_glyph_control = False,
glyph_control_key = "centered_hint", # "arranged_hint"
glyph_control_proc_config = None,
centered_glyph_folder = None,
max_glyph_imgs_num = 0, #5,
glyph_image_encoder_type = "CLIP",
glyph_image_drop_rate = 0,
uncond_glyph_image_type = "white" #"whiteboard",
) -> None:
self.root_dir = Path(img_folder)
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
# postprocess
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
# image transform
self.imagenet_proc = imagenet_proc
self.do_new_proc = do_new_proc
if self.do_new_proc:
if new_proc_config is not None:
self.new_proc_func = instantiate_from_config(new_proc_config)
else:
self.new_proc_func = new_process_im()
elif self.imagenet_proc:
if imagenet_proc_config is not None:
self.imagenet_proc_func = instantiate_from_config(imagenet_proc_config)
else:
self.imagenet_proc_func = imagenet_process_im()
self.process_im = self.imagenet_proc_func
else:
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(), # to be checked
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
self.process_im = self.simple_process_im
# caption
assert caption_file is not None
with open(caption_file, "rt") as f:
ext = Path(caption_file).suffix.lower()
if ext == ".json":
captions = json.load(f)
else:
raise ValueError(f"Unrecognised format: {ext}")
self.captions = captions["data"]
if OneCapPerImage and ocr_file is None:
new_captions = []
taken_images = []
for caption_data in self.captions:
if caption_data["image_id"] in taken_images:
continue
else:
new_captions.append(caption_data)
taken_images.append(caption_data["image_id"])
self.captions = new_captions
# ocr info
assert ocr_file is not None
self.ocr_file = ocr_file
with open(ocr_file, "r") as f:
ocrs = json.loads(f.read())
ocr_data = ocrs['data']
self.ocr_data = ocr_data
# hint
self.no_hint = no_hint
self.control_key = control_key
self.hint_folder = None
if not self.no_hint:
if hint_folder is None:
print("Warning: The folder of hint images is not provided! No hint will be used")
self.no_hint = True
else:
self.hint_folder = Path(hint_folder)
# centered_hint
self.add_glyph_control = add_glyph_control
self.glyph_control_key = glyph_control_key
self.centered_glyph_folder = centered_glyph_folder
if add_glyph_control:
# if centered_glyph_folder is not None:
# self.add_glyph_control = True
# self.centered_glyph_folder = centered_glyph_folder
if glyph_image_encoder_type not in ["CLIP", "VQGAN"]:
print("currently not support other types of glyph image encoders")
raise ValueError
if glyph_control_proc_config is not None:
self.glyph_control_proc = instantiate_from_config(glyph_control_proc_config)
else:
if glyph_image_encoder_type == "CLIP":
self.glyph_control_proc = process_wb_im(exchange_channel= True, image_transforms=[])
elif glyph_image_encoder_type == "VQGAN":
self.glyph_control_proc = vqgan_process_im(augment=False, ori_preprocessor = False)
# else:
# print("Warning: The folder of centered glyph images is not provided! No additional glyph images will be used")
self.glyph_image_encoder_type = glyph_image_encoder_type
self.default_caption = default_caption
self.return_paths = return_paths
self.filter_data = filter_data
self.filter_words = filter_words
self.new_ocr_info = new_ocr_info
self.rendered_txt_in_caption = rendered_txt_in_caption
self.filter_token_num = filter_token_num
self.max_token_num = max_token_num
self.caption_choices = caption_choices
self.caption_drop_rates = caption_drop_rates
self.max_glyph_imgs_num = max_glyph_imgs_num
self.glyph_image_drop_rate = glyph_image_drop_rate
self.uncond_glyph_image_type = uncond_glyph_image_type
def __len__(self):
return len(self.ocr_data)
def __getitem__(self, index):
data = {}
assert self.ocr_file is not None
sample = self.ocr_data[index]
image_id = sample["image_id"]
ocr_tokens = sample["ocr_tokens"]
ocr_info = sample["ocr_info"]
chosen = image_id + ".jpg"
# original image filename
filename = self.root_dir/chosen
if not self.no_hint:
# hint image filename
hint_filename = self.hint_folder/chosen
if not os.path.isfile(hint_filename):
print("Hint file {} does not exist".format(hint_filename))
return self.__getitem__(np.random.choice(self.__len__()))
else:
hint_filename = None
for d in self.captions:
if d["image_id"] == image_id:
image_captions = d["reference_strs"]
image_classes = d["image_classes"]
break
if not len(ocr_tokens) or not len(image_captions) or not len(image_classes):
return self.__getitem__(np.random.choice(self.__len__()))
# filter data according the object classes
if self.filter_data:
if not len([word for word in self.filter_words if word in " ".join(image_classes).lower()]):
return self.__getitem__(np.random.choice(self.__len__()))
# get the info about the ocr area in order to
# (1): obtain the locations where the images are cropped during augmentation
# (2): filter the data according the ocr area or the number of ocr tokens
with Image.open(filename) as img:
im_w, im_h = img.size
pos_info_list = []
# pos_info_dict = defaultdict(list) #dict()
pos_info_tuples = []
# filter the data according the ocr area or the number of ocr tokens
if self.filter_token_num and len(ocr_info) > self.max_token_num:
return self.__getitem__(np.random.choice(self.__len__()))
for item in ocr_info:
token_box = item['bounding_box']
lf, up = token_box['top_left_x'], token_box['top_left_y']
w, h = token_box['width'], token_box['height']
if not self.new_ocr_info:
# old version
rg, dn = lf + w, up + h
pos_info_list.append([lf, up, rg, dn])
else:
## fix the bug when rotation happens
# pos_info_dict[item["word"]] = 0.06 * lf + up
lf, w = int(lf * im_w), int(w * im_w)
up, h = int(up * im_h), int(h * im_h)
yaw = token_box['yaw']
tf_xy = np.array([lf, up])
yaw = yaw * np.pi / 180
rotate_mx = np.array([
[np.cos(yaw), -np.sin(yaw)],
[np.sin(yaw), np.cos(yaw)]
])
rel_cord = np.matmul(rotate_mx, np.array(
[[0, 0],
[w, 0],
[0, h],
[w, h]]
).T)
min_xy = np.min(rel_cord, axis = 1).astype(int) + tf_xy
max_xy = np.max(rel_cord, axis = 1).astype(int) + tf_xy
pos_info_list.append(
[
min_xy[0], min_xy[1],
max_xy[0], max_xy[1]
]
)
mean_xy = rel_cord[:, -1] / 2 + tf_xy
# pos_info_dict[item["word"]].append(0.2 * lf + mean_xy[1]) #0.15
pos_info_tuples.append((item["word"], 0.2 * lf + mean_xy[1])) #0.15
pos_info_list = np.array(pos_info_list)
all_lf, all_up = np.min(pos_info_list[:, :2], axis = 0)
all_rg, all_dn = np.max(pos_info_list[:, 2:], axis = 0)
all_pos_info = [all_lf, all_up, all_rg, all_dn]
# embed the rendered text into the prompt
caption_wr_text = None
# arrange_tokens = [item[0] for item in (sorted(pos_info_dict.items(), key=lambda x: x[1]))]
arrange_tokens = [item[0] for item in (sorted(pos_info_tuples, key=lambda x: x[1]))]
if self.rendered_txt_in_caption:
assert self.filter_data # TODO: support other image classes
valid_words = " ".join(arrange_tokens)
class_name = ""
for word in self.filter_words:
if word in " ".join(image_classes).lower():
class_name = word
break
if class_name == "":
return self.__getitem__(np.random.choice(self.__len__()))
else:
caption_wr_text = 'A {} that says "{}".'.format(
class_name, valid_words
)
# process the original image and hint image
if self.do_new_proc:
# recommended
assert all_pos_info
im, im_hint = self.new_proc_func(filename, all_pos_info, hint_filename)
else:
im_hint = None
im = Image.open(filename)
im = self.process_im(im) # not supported for the flip option for now
if hint_filename is not None:
im_hint = Image.open(hint_filename)
im_hint = self.process_im(im_hint)
if not self.no_hint:
assert im_hint is not None
data[self.control_key] = im_hint
data[self.first_stage_key] = im
# process the centered glyph images
if self.add_glyph_control:
drop_glyph_image = torch.rand(1) < self.glyph_image_drop_rate
# assert self.uncond_glyph_image_type == "whiteboard"
if self.glyph_control_key == "centered_hint":
if len(arrange_tokens) == 0:
print("error: glyphs - None")
return self.__getitem__(np.random.choice(self.__len__()))
if drop_glyph_image:
cglyph_images_procd = [
self.glyph_control_proc(Image.new("RGB", (224, 224), self.uncond_glyph_image_type))
] * (len(arrange_tokens) if self.max_glyph_imgs_num == 0 else self.max_glyph_imgs_num)
else:
cglyph_images_procd = []
if self.centered_glyph_folder is not None:
for token in arrange_tokens:
ctext = re.sub(r'[^\w\s]', '', token)
if ctext == "":
print("special charaters: {} | ctext is {}".format(token, ctext))
continue
cgim_name = os.path.join(self.centered_glyph_folder, rf"{image_id}_{ctext}.jpg")
try:
cgim = Image.open(cgim_name)
except Exception as e:
# print(e)
# print("Can't open", cgim_name)
continue
cgim = self.glyph_control_proc(cgim)
cglyph_images_procd.append(cgim)
if self.max_glyph_imgs_num > 0 and len(cglyph_images_procd) >= self.max_glyph_imgs_num:
break
if len(cglyph_images_procd) == 0:
print("could not find centered glyph images for {}".format(image_id))
return self.__getitem__(np.random.choice(self.__len__()))
else:
glyphs = [rg.strip() for rg in arrange_tokens]
# if len(glyphs) == 0:
# print("error: glyphs - None")
# return self.__getitem__(np.random.choice(self.__len__()))
if self.max_glyph_imgs_num > 0:
glyphs = glyphs[:self.max_glyph_imgs_num]
glyph_images = render_glyph_image(glyphs, fill_way="tight") #"both_padding"
cglyph_images_procd = []
for cgim in glyph_images:
if 0 in cgim.size:
print("error: glyph image has ", cgim.size, arrange_tokens)
return self.__getitem__(np.random.choice(self.__len__()))
cglyph_images_procd.append(self.glyph_control_proc(cgim))
elif self.glyph_control_key == "arranged_hint":
assert hint_filename is not None
if not drop_glyph_image:
hint_img = Image.open(hint_filename)
cglyph_images_procd = [
self.glyph_control_proc(
hint_img
)
]
else:
cglyph_images_procd = [
self.glyph_control_proc(
Image.new("RGB", (224, 224), self.uncond_glyph_image_type)
)
]
else:
print("not support glyph control keys beyond 'centered_hint' and 'arranage_hint'")
raise ValueError
# if self.max_glyph_imgs_num > 0:
# cglyph_images_procd = cglyph_images_procd[:self.max_glyph_imgs_num]
# data[self.glyph_control_key] = torch.stack(cglyph_images_procd, dim = 0)
if isinstance(cglyph_images_procd[0], torch.Tensor):
data[self.glyph_control_key] = torch.stack(cglyph_images_procd, dim = 0)
elif isinstance(cglyph_images_procd[0], np.ndarray):
data[self.glyph_control_key] = np.stack(cglyph_images_procd, axis = 0)
if self.return_paths:
data["path"] = str(filename)
caption_ori = random.choice(image_captions)
caption_wo_text = None # TODO
prompt_list = []
for i in range(len(self.caption_choices)):
cc = self.caption_choices[i]
if cc == "original":
caption = caption_ori
elif cc == "w_rend_text":
caption = caption_wr_text if caption_wr_text is not None else caption_ori
elif cc == "wo_rend_text":
caption = caption_wo_text if caption_wo_text is not None else caption_ori
if torch.rand(1) < self.caption_drop_rates[i]:
caption = ""
prompt_list.append(caption)
data[self.cond_stage_key] = prompt_list if len(prompt_list) > 1 else prompt_list[0]
if self.postprocess is not None:
data = self.postprocess(data)
return data
def simple_process_im(self, im):
im = im.convert("RGB")
return self.tform(im)