Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,435 Bytes
a30a228 36c5a0c a30a228 9c49811 f30cbcc a30a228 3b83af7 9c49811 a30a228 f30cbcc 9c49811 f30cbcc 9c49811 f30cbcc 9c49811 f30cbcc 9c49811 f8b3d0f 9c49811 f8b3d0f 5808d8f f30cbcc 5808d8f f30cbcc 5808d8f f30cbcc a30a228 f30cbcc a30a228 f30cbcc 36c5a0c a30a228 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
from typing import List
import pandas as pd
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS_QA, COLS_LONG_DOC
from src.leaderboard.read_evals import FullEvalResult, get_leaderboard_df
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
return df.loc[df["Reranking Model"].isin(reranking_query)]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
AutoEvalColumnQA.retrieval_model.name,
AutoEvalColumnQA.reranking_model.name,
]
)
return filtered_df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str = "qa") -> pd.DataFrame:
if task == "qa":
always_here_cols = [
AutoEvalColumnQA.retrieval_model.name,
AutoEvalColumnQA.reranking_model.name,
AutoEvalColumnQA.average.name
]
cols = list(frozenset(COLS_QA).intersection(frozenset(BENCHMARK_COLS_QA)))
elif task == "long_doc":
always_here_cols = [
AutoEvalColumnLongDoc.retrieval_model.name,
AutoEvalColumnLongDoc.reranking_model.name,
AutoEvalColumnLongDoc.average.name
]
cols = list(frozenset(COLS_LONG_DOC).intersection(frozenset(BENCHMARK_COLS_LONG_DOC)))
selected_cols = []
for c in cols:
if c not in df.columns:
continue
if task == "qa":
eval_col = BenchmarksQA[c].value
elif task == "long_doc":
eval_col = BenchmarksLongDoc[c].value
if eval_col.domain not in domain_query:
continue
if eval_col.lang not in language_query:
continue
selected_cols.append(c)
# We use COLS to maintain sorting
filtered_df = df[always_here_cols + selected_cols]
filtered_df[always_here_cols[2]] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
return filtered_df
def update_table(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs)
return df
def update_table_long_doc(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs, task='long_doc')
return df
def update_metric(
raw_data: List[FullEvalResult],
task: str,
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
) -> pd.DataFrame:
if task == 'qa':
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
return update_table(
leaderboard_df,
domains,
langs,
reranking_model,
query
)
elif task == 'long_doc':
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
return update_table_long_doc(
leaderboard_df,
domains,
langs,
reranking_model,
query
)
def upload_file(files):
file_paths = [file.name for file in files]
print(f"file uploaded: {file_paths}")
# for fp in file_paths:
# # upload the file
# print(file_paths)
# HfApi(token="").upload_file(...)
# os.remove(fp)
return file_paths
|