Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,080 Bytes
9f44d20 5664d71 9f44d20 8e1f9af 9f44d20 a30a228 9c49811 f30cbcc 4a6f9cd 8e1f9af 9c49811 32ebf18 9c49811 32ebf18 9c49811 5eb510c df659d0 f30cbcc df659d0 1a2dba5 df659d0 2edd122 df659d0 5eb510c df659d0 2edd122 df659d0 8e1f9af df659d0 2edd122 9c49811 f30cbcc 1a2dba5 f30cbcc 9c49811 2edd122 6fb03e0 2edd122 9c49811 f8b3d0f 9c49811 f8b3d0f 5808d8f f30cbcc 5808d8f f30cbcc 5808d8f f30cbcc a30a228 f30cbcc 1a2dba5 a30a228 f30cbcc 36c5a0c d00fb74 9f44d20 4a6f9cd 8e1f9af 4a6f9cd 5664d71 8e1f9af 4a6f9cd 8e1f9af 4a6f9cd 8e1f9af 4a6f9cd 8e1f9af 4a6f9cd 9f44d20 4a6f9cd 5664d71 9f44d20 4a6f9cd d00fb74 4a6f9cd 5664d71 9f44d20 8e1f9af 9f44d20 4a6f9cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import json
from datetime import datetime, timezone
from pathlib import Path
from typing import List
import pandas as pd
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
from src.display.formatting import styled_message, styled_error
from src.display.utils import COLS_QA, TYPES_QA, COLS_LONG_DOC, TYPES_LONG_DOC, COL_NAME_RANK, COL_NAME_AVG, \
COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, get_default_auto_eval_column_dict
from src.envs import API, SEARCH_RESULTS_REPO
from src.read_evals import FullEvalResult, get_leaderboard_df
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
return df.loc[df["Reranking Model"].isin(reranking_query)]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
COL_NAME_RETRIEVAL_MODEL,
COL_NAME_RERANKING_MODEL,
]
)
return filtered_df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))]
def get_default_cols(task: str, columns: list = [], add_fix_cols: bool = True) -> list:
cols = []
types = []
if task == "qa":
cols_list = COLS_QA
types_list = TYPES_QA
benchmark_list = BENCHMARK_COLS_QA
elif task == "long-doc":
cols_list = COLS_LONG_DOC
types_list = TYPES_LONG_DOC
benchmark_list = BENCHMARK_COLS_LONG_DOC
else:
raise NotImplemented
for col_name, col_type in zip(cols_list, types_list):
if col_name not in benchmark_list:
continue
if columns and col_name not in columns:
continue
cols.append(col_name)
types.append(col_type)
if add_fix_cols:
cols = FIXED_COLS + cols
types = FIXED_COLS_TYPES + types
return cols, types
fixed_cols = get_default_auto_eval_column_dict()[:-2]
FIXED_COLS = [c.name for _, _, c in fixed_cols]
FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols]
def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, task: str = "qa") -> pd.DataFrame:
cols = get_default_cols(task=task, columns=df.columns, add_fix_cols=False)
selected_cols = []
for c in cols:
if task == "qa":
eval_col = BenchmarksQA[c].value
elif task == "long-doc":
eval_col = BenchmarksLongDoc[c].value
if eval_col.domain not in domain_query:
continue
if eval_col.lang not in language_query:
continue
selected_cols.append(c)
# We use COLS to maintain sorting
filtered_df = df[FIXED_COLS + selected_cols]
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
filtered_df.reset_index(inplace=True, drop=True)
filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="min")
return filtered_df
def update_table(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs)
return df
def update_table_long_doc(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs, task='long_doc')
return df
def update_metric(
raw_data: List[FullEvalResult],
task: str,
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
) -> pd.DataFrame:
if task == 'qa':
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
return update_table(
leaderboard_df,
domains,
langs,
reranking_model,
query
)
elif task == "long-doc":
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
return update_table_long_doc(
leaderboard_df,
domains,
langs,
reranking_model,
query
)
def upload_file(filepath: str):
if not filepath.endswith(".zip"):
print(f"file uploading aborted. wrong file type: {filepath}")
return filepath
return filepath
from huggingface_hub import ModelCard
from huggingface_hub.utils import EntryNotFoundError
def get_iso_format_timestamp():
# Get the current timestamp with UTC as the timezone
current_timestamp = datetime.now(timezone.utc)
# Remove milliseconds by setting microseconds to zero
current_timestamp = current_timestamp.replace(microsecond=0)
# Convert to ISO 8601 format and replace the offset with 'Z'
iso_format_timestamp = current_timestamp.isoformat().replace('+00:00', 'Z')
filename_friendly_timestamp = current_timestamp.strftime('%Y%m%d%H%M%S')
return iso_format_timestamp, filename_friendly_timestamp
def submit_results(filepath: str, model: str, model_url: str, version: str = "AIR-Bench_24.04", anonymous=False):
if not filepath.endswith(".zip"):
return styled_error(f"file uploading aborted. wrong file type: {filepath}")
# validate model
if not model:
return styled_error("failed to submit. Model name can not be empty.")
# validate model url
if not model_url.startswith("https://huggingface.co/"):
return styled_error(
f"failed to submit. Model url must be a link to a valid HuggingFace model on HuggingFace space. Illegal model url: {model_url}")
# validate model card
repo_id = model_url.removeprefix("https://huggingface.co/")
try:
card = ModelCard.load(repo_id)
except EntryNotFoundError as e:
print(e)
return styled_error(
f"failed to submit. Model url must be a link to a valid HuggingFace model on HuggingFace space. Could not get model {repo_id}")
# rename the uploaded file
input_fp = Path(filepath)
revision = input_fp.name.removesuffix(".zip")
timestamp_config, timestamp_fn = get_iso_format_timestamp()
output_fn = f"{timestamp_fn}-{input_fp.name}"
input_folder_path = input_fp.parent
API.upload_file(
path_or_fileobj=filepath,
path_in_repo=f"{version}/{model}/{output_fn}",
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
commit_message=f"feat: submit {model} to evaluate")
output_config_fn = f"{output_fn.removesuffix('.zip')}.json"
output_config = {
"model_name": f"{model}",
"model_url": f"{model_url}",
"version": f"{version}",
"anonymous": f"{anonymous}",
"revision": f"{revision}",
"timestamp": f"{timestamp_config}"
}
with open(input_folder_path / output_config_fn, "w") as f:
json.dump(output_config, f, ensure_ascii=False)
API.upload_file(
path_or_fileobj=input_folder_path / output_config_fn,
path_in_repo=f"{version}/{model}/{output_config_fn}",
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
commit_message=f"feat: submit {model} config")
return styled_message(
f"Thanks for submission!\nSubmission revision: {revision}"
)
|