Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 3,954 Bytes
649e0fb
 
 
 
 
ec8e2d4
 
 
 
 
 
 
 
649e0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8e2d4
649e0fb
 
 
 
 
 
 
 
ec8e2d4
649e0fb
 
ec8e2d4
649e0fb
 
 
 
 
 
 
 
 
 
 
 
 
1a22df4
7845083
 
ec8e2d4
 
7845083
1a22df4
7845083
 
 
649e0fb
ec8e2d4
649e0fb
ec8e2d4
 
5e03e4a
ec8e2d4
649e0fb
ec8e2d4
 
 
649e0fb
 
ec8e2d4
 
bf586e3
ec8e2d4
bf586e3
ec8e2d4
 
 
bf586e3
649e0fb
 
ec8e2d4
 
649e0fb
 
 
 
 
7845083
649e0fb
7845083
649e0fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os.path
from typing import List

import pandas as pd

from src.envs import (
    BENCHMARK_VERSION_LIST,
    COL_NAME_IS_ANONYMOUS,
    COL_NAME_REVISION,
    COL_NAME_TIMESTAMP,
    DEFAULT_METRIC_LONG_DOC,
    DEFAULT_METRIC_QA,
)
from src.models import FullEvalResult, LeaderboardDataStore
from src.utils import get_default_cols, get_leaderboard_df

pd.options.mode.copy_on_write = True


def load_raw_eval_results(results_path: str) -> List[FullEvalResult]:
    """
    Load the evaluation results from a json file
    """
    model_result_filepaths = []
    for root, dirs, files in os.walk(results_path):
        if len(files) == 0:
            continue

        # select the latest results
        for file in files:
            if not (file.startswith("results") and file.endswith(".json")):
                print(f"skip {file}")
                continue
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # create evaluation results
        try:
            eval_result = FullEvalResult.init_from_json_file(model_result_filepath)
        except UnicodeDecodeError:
            print(f"loading file failed. {model_result_filepath}")
            continue
        print(f"file loaded: {model_result_filepath}")
        timestamp = eval_result.timestamp
        eval_results[timestamp] = eval_result

    results = []
    for k, v in eval_results.items():
        try:
            v.to_dict()
            results.append(v)
        except KeyError:
            print(f"loading failed: {k}")
            continue
    return results


def get_safe_name(name: str):
    """Get RFC 1123 compatible safe name"""
    name = name.replace("-", "_")
    return "".join(character.lower() for character in name if (character.isalnum() or character == "_"))


def load_leaderboard_datastore(file_path, version) -> LeaderboardDataStore:
    slug = get_safe_name(version)[-4:]
    lb_data_store = LeaderboardDataStore(version, slug, None, None, None, None, None, None, None, None)
    lb_data_store.raw_data = load_raw_eval_results(file_path)
    print(f"raw data: {len(lb_data_store.raw_data)}")

    lb_data_store.raw_df_qa = get_leaderboard_df(lb_data_store, task="qa", metric=DEFAULT_METRIC_QA)
    print(f"QA data loaded: {lb_data_store.raw_df_qa.shape}")
    lb_data_store.leaderboard_df_qa = lb_data_store.raw_df_qa.copy()
    shown_columns_qa, types_qa = get_default_cols("qa", lb_data_store.slug, add_fix_cols=True)
    lb_data_store.types_qa = types_qa
    lb_data_store.leaderboard_df_qa = lb_data_store.leaderboard_df_qa[
        ~lb_data_store.leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]
    ][shown_columns_qa]
    lb_data_store.leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)

    lb_data_store.raw_df_long_doc = get_leaderboard_df(lb_data_store, task="long-doc", metric=DEFAULT_METRIC_LONG_DOC)
    print(f"Long-Doc data loaded: {len(lb_data_store.raw_df_long_doc)}")
    lb_data_store.leaderboard_df_long_doc = lb_data_store.raw_df_long_doc.copy()
    shown_columns_long_doc, types_long_doc = get_default_cols("long-doc", lb_data_store.slug, add_fix_cols=True)
    lb_data_store.types_long_doc = types_long_doc
    lb_data_store.leaderboard_df_long_doc = lb_data_store.leaderboard_df_long_doc[
        ~lb_data_store.leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]
    ][shown_columns_long_doc]
    lb_data_store.leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)

    lb_data_store.reranking_models = sorted(
        list(frozenset([eval_result.reranking_model for eval_result in lb_data_store.raw_data]))
    )
    return lb_data_store


def load_eval_results(file_path: str):
    output = {}
    for version in BENCHMARK_VERSION_LIST:
        fn = f"{file_path}/{version}"
        output[version] = load_leaderboard_datastore(fn, version)
    return output