AIRider's picture
Update src/app.py
6794250 verified
import tempfile
import time
from typing import Any
from collections.abc import Sequence
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize segmenter
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def apply_mask(
img: Image.Image,
mask_img: Image.Image,
defringe: bool = True,
) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
# Mitigate edge halo effects via color decontamination
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = estimate_foreground_ml(rgb, alpha)
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
@spaces.GPU
def _gpu_process(
img: Image.Image,
bbox: BoundingBox | None,
) -> tuple[Image.Image, BoundingBox | None, list[str]]:
time_log: list[str] = []
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
def _process(
img: Image.Image,
bbox: BoundingBox | None,
) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
if img.width > 2048 or img.height > 2048:
orig_res = max(img.width, img.height)
img.thumbnail((2048, 2048))
if isinstance(bbox, tuple):
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in bbox)
bbox = (x0, y0, x1, y1)
mask, bbox, time_log = _gpu_process(img, bbox)
t0 = time.time()
masked_alpha = apply_mask(img, mask, defringe=True)
time_log.append(f"crop: {time.time() - t0}")
print(", ".join(time_log))
masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
bbox = thresholded.getbbox()
to_dl = masked_alpha.crop(bbox)
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
to_dl.save(temp, format="PNG")
temp.close()
return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True)
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
assert isinstance(img := prompts["image"], Image.Image)
assert isinstance(boxes := prompts["boxes"], list)
if len(boxes) == 1:
assert isinstance(box := boxes[0], dict)
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
else:
assert len(boxes) == 0
bbox = None
return _process(img, bbox)
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
css = '''
.gradio-container {
max-width: 1400px !important;
margin: auto;
}
/* 이미지 크기 조정 */
.image-container img {
max-height: 600px !important;
}
/* 이미지 슬라이더 크기 조정 */
.image-slider {
height: 600px !important;
max-height: 600px !important;
}
h1 {
text-align: center;
font-family: 'Pretendard', sans-serif;
color: #EA580C;
font-size: 2.5rem;
font-weight: 700;
margin-bottom: 1.5rem;
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.subtitle {
text-align: center;
color: #4B5563;
font-size: 1.1rem;
margin-bottom: 2rem;
font-family: 'Pretendard', sans-serif;
}
.gr-button-primary {
background-color: #F97316 !important;
border: none !important;
box-shadow: 0 2px 4px rgba(234, 88, 12, 0.2) !important;
}
.gr-button-primary:hover {
background-color: #EA580C !important;
transform: translateY(-1px);
box-shadow: 0 4px 6px rgba(234, 88, 12, 0.25) !important;
}
.footer-content {
text-align: center;
margin-top: 3rem;
padding: 2rem;
background: linear-gradient(to bottom, #FFF7ED, white);
border-radius: 12px;
font-family: 'Pretendard', sans-serif;
}
.footer-content a {
color: #EA580C;
text-decoration: none;
font-weight: 500;
transition: all 0.2s;
}
.footer-content a:hover {
color: #C2410C;
}
.visit-button {
background-color: #EA580C;
color: white !important; /* 강제 적용 */
padding: 12px 24px;
border-radius: 8px;
font-weight: 600;
text-decoration: none;
display: inline-block;
transition: all 0.3s;
margin-top: 1rem;
box-shadow: 0 2px 4px rgba(234, 88, 12, 0.2);
font-size: 1.1rem;
}
.visit-button:hover {
background-color: #C2410C;
transform: translateY(-2px);
box-shadow: 0 4px 6px rgba(234, 88, 12, 0.25);
color: white !important; /* 호버 상태에서도 강제 적용 */
}
.container-wrapper {
background: white;
border-radius: 16px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.image-container {
border-radius: 12px;
overflow: hidden;
border: 2px solid #F3F4F6;
}
'''
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue=gr.themes.Color(
c50="#FFF7ED",
c100="#FFEDD5",
c200="#FED7AA",
c300="#FDBA74",
c400="#FB923C",
c500="#F97316",
c600="#EA580C",
c700="#C2410C",
c800="#9A3412",
c900="#7C2D12",
c950="#431407",
),
secondary_hue="zinc",
neutral_hue="zinc",
font=("Pretendard", "sans-serif")
),
css=css
) as demo:
gr.HTML(
"""
<h1>끝장AI 이미지 객체 추출기</h1>
<div class="subtitle">
이미지에서 원하는 객체를 손쉽게 분리하여 투명 배경으로 추출하세요.<br>
고품질의 HD 이미지 추출을 지원합니다.
</div>
"""
)
with gr.Row(elem_classes="container-wrapper"):
with gr.Column():
annotator = image_annotator(
image_type="pil",
disable_edit_boxes=True,
show_download_button=False,
show_share_button=False,
single_box=True,
label="원본 이미지",
elem_classes="image-container"
)
btn = gr.ClearButton(value="객체 추출하기", interactive=False)
with gr.Column():
oimg = ImageSlider(label="추출 결과", show_download_button=False, elem_classes="image-container")
dlbt = gr.DownloadButton("이미지 다운로드", interactive=False)
btn.add(oimg)
annotator.change(
fn=on_change_bbox,
inputs=[annotator],
outputs=[btn],
)
btn.click(
fn=process_bbox,
inputs=[annotator],
outputs=[oimg, dlbt],
)
examples = [
{
"image": "examples/potted-plant.jpg",
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
},
{
"image": "examples/chair.jpg",
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}],
},
{
"image": "examples/black-lamp.jpg",
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}],
},
]
ex = gr.Examples(
examples=examples,
inputs=[annotator],
outputs=[oimg, dlbt],
fn=process_bbox,
cache_examples=True,
)
gr.HTML(
"""
<div class='footer-content'>
<p style='font-size: 1.1rem; font-weight: 500; color: #1F2937;'>끝장AI가 제공하는 고급 AI 도구를 더 경험하고 싶으신가요?</p>
<a href='https://finalendai.com' target='_blank' class='visit-button' style='color: white !important;'>
끝장AI 방문하기
</a>
<p style='margin-top: 1.5rem; color: #6B7280; font-size: 0.9rem;'>
© 2024 끝장AI. All rights reserved.
</p>
</div>
"""
)
demo.launch(share=False)