Spaces:
Sleeping
Sleeping
import tempfile | |
import time | |
from typing import Any | |
from collections.abc import Sequence | |
import gradio as gr | |
import numpy as np | |
import pillow_heif | |
import spaces | |
import torch | |
from gradio_image_annotation import image_annotator | |
from gradio_imageslider import ImageSlider | |
from PIL import Image | |
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml | |
from refiners.fluxion.utils import no_grad | |
from refiners.solutions import BoxSegmenter | |
BoundingBox = tuple[int, int, int, int] | |
pillow_heif.register_heif_opener() | |
pillow_heif.register_avif_opener() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Initialize segmenter | |
segmenter = BoxSegmenter(device="cpu") | |
segmenter.device = device | |
segmenter.model = segmenter.model.to(device=segmenter.device) | |
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: | |
if not bboxes: | |
return None | |
for bbox in bboxes: | |
assert len(bbox) == 4 | |
assert all(isinstance(x, int) for x in bbox) | |
return ( | |
min(bbox[0] for bbox in bboxes), | |
min(bbox[1] for bbox in bboxes), | |
max(bbox[2] for bbox in bboxes), | |
max(bbox[3] for bbox in bboxes), | |
) | |
def apply_mask( | |
img: Image.Image, | |
mask_img: Image.Image, | |
defringe: bool = True, | |
) -> Image.Image: | |
assert img.size == mask_img.size | |
img = img.convert("RGB") | |
mask_img = mask_img.convert("L") | |
if defringe: | |
# Mitigate edge halo effects via color decontamination | |
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 | |
foreground = estimate_foreground_ml(rgb, alpha) | |
img = Image.fromarray((foreground * 255).astype("uint8")) | |
result = Image.new("RGBA", img.size) | |
result.paste(img, (0, 0), mask_img) | |
return result | |
def _gpu_process( | |
img: Image.Image, | |
bbox: BoundingBox | None, | |
) -> tuple[Image.Image, BoundingBox | None, list[str]]: | |
time_log: list[str] = [] | |
t0 = time.time() | |
mask = segmenter(img, bbox) | |
time_log.append(f"segment: {time.time() - t0}") | |
return mask, bbox, time_log | |
def _process( | |
img: Image.Image, | |
bbox: BoundingBox | None, | |
) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: | |
if img.width > 2048 or img.height > 2048: | |
orig_res = max(img.width, img.height) | |
img.thumbnail((2048, 2048)) | |
if isinstance(bbox, tuple): | |
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in bbox) | |
bbox = (x0, y0, x1, y1) | |
mask, bbox, time_log = _gpu_process(img, bbox) | |
t0 = time.time() | |
masked_alpha = apply_mask(img, mask, defringe=True) | |
time_log.append(f"crop: {time.time() - t0}") | |
print(", ".join(time_log)) | |
masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) | |
thresholded = mask.point(lambda p: 255 if p > 10 else 0) | |
bbox = thresholded.getbbox() | |
to_dl = masked_alpha.crop(bbox) | |
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png") | |
to_dl.save(temp, format="PNG") | |
temp.close() | |
return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True) | |
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: | |
assert isinstance(img := prompts["image"], Image.Image) | |
assert isinstance(boxes := prompts["boxes"], list) | |
if len(boxes) == 1: | |
assert isinstance(box := boxes[0], dict) | |
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"]) | |
else: | |
assert len(boxes) == 0 | |
bbox = None | |
return _process(img, bbox) | |
def on_change_bbox(prompts: dict[str, Any] | None): | |
return gr.update(interactive=prompts is not None) | |
css = ''' | |
.gradio-container { | |
max-width: 1400px !important; | |
margin: auto; | |
} | |
/* 이미지 크기 조정 */ | |
.image-container img { | |
max-height: 600px !important; | |
} | |
/* 이미지 슬라이더 크기 조정 */ | |
.image-slider { | |
height: 600px !important; | |
max-height: 600px !important; | |
} | |
h1 { | |
text-align: center; | |
font-family: 'Pretendard', sans-serif; | |
color: #EA580C; | |
font-size: 2.5rem; | |
font-weight: 700; | |
margin-bottom: 1.5rem; | |
text-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.subtitle { | |
text-align: center; | |
color: #4B5563; | |
font-size: 1.1rem; | |
margin-bottom: 2rem; | |
font-family: 'Pretendard', sans-serif; | |
} | |
.gr-button-primary { | |
background-color: #F97316 !important; | |
border: none !important; | |
box-shadow: 0 2px 4px rgba(234, 88, 12, 0.2) !important; | |
} | |
.gr-button-primary:hover { | |
background-color: #EA580C !important; | |
transform: translateY(-1px); | |
box-shadow: 0 4px 6px rgba(234, 88, 12, 0.25) !important; | |
} | |
.footer-content { | |
text-align: center; | |
margin-top: 3rem; | |
padding: 2rem; | |
background: linear-gradient(to bottom, #FFF7ED, white); | |
border-radius: 12px; | |
font-family: 'Pretendard', sans-serif; | |
} | |
.footer-content a { | |
color: #EA580C; | |
text-decoration: none; | |
font-weight: 500; | |
transition: all 0.2s; | |
} | |
.footer-content a:hover { | |
color: #C2410C; | |
} | |
.visit-button { | |
background-color: #EA580C; | |
color: white !important; /* 강제 적용 */ | |
padding: 12px 24px; | |
border-radius: 8px; | |
font-weight: 600; | |
text-decoration: none; | |
display: inline-block; | |
transition: all 0.3s; | |
margin-top: 1rem; | |
box-shadow: 0 2px 4px rgba(234, 88, 12, 0.2); | |
font-size: 1.1rem; | |
} | |
.visit-button:hover { | |
background-color: #C2410C; | |
transform: translateY(-2px); | |
box-shadow: 0 4px 6px rgba(234, 88, 12, 0.25); | |
color: white !important; /* 호버 상태에서도 강제 적용 */ | |
} | |
.container-wrapper { | |
background: white; | |
border-radius: 16px; | |
padding: 2rem; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05); | |
} | |
.image-container { | |
border-radius: 12px; | |
overflow: hidden; | |
border: 2px solid #F3F4F6; | |
} | |
''' | |
with gr.Blocks( | |
theme=gr.themes.Soft( | |
primary_hue=gr.themes.Color( | |
c50="#FFF7ED", | |
c100="#FFEDD5", | |
c200="#FED7AA", | |
c300="#FDBA74", | |
c400="#FB923C", | |
c500="#F97316", | |
c600="#EA580C", | |
c700="#C2410C", | |
c800="#9A3412", | |
c900="#7C2D12", | |
c950="#431407", | |
), | |
secondary_hue="zinc", | |
neutral_hue="zinc", | |
font=("Pretendard", "sans-serif") | |
), | |
css=css | |
) as demo: | |
gr.HTML( | |
""" | |
<h1>끝장AI 이미지 객체 추출기</h1> | |
<div class="subtitle"> | |
이미지에서 원하는 객체를 손쉽게 분리하여 투명 배경으로 추출하세요.<br> | |
고품질의 HD 이미지 추출을 지원합니다. | |
</div> | |
""" | |
) | |
with gr.Row(elem_classes="container-wrapper"): | |
with gr.Column(): | |
annotator = image_annotator( | |
image_type="pil", | |
disable_edit_boxes=True, | |
show_download_button=False, | |
show_share_button=False, | |
single_box=True, | |
label="원본 이미지", | |
elem_classes="image-container" | |
) | |
btn = gr.ClearButton(value="객체 추출하기", interactive=False) | |
with gr.Column(): | |
oimg = ImageSlider(label="추출 결과", show_download_button=False, elem_classes="image-container") | |
dlbt = gr.DownloadButton("이미지 다운로드", interactive=False) | |
btn.add(oimg) | |
annotator.change( | |
fn=on_change_bbox, | |
inputs=[annotator], | |
outputs=[btn], | |
) | |
btn.click( | |
fn=process_bbox, | |
inputs=[annotator], | |
outputs=[oimg, dlbt], | |
) | |
examples = [ | |
{ | |
"image": "examples/potted-plant.jpg", | |
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}], | |
}, | |
{ | |
"image": "examples/chair.jpg", | |
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}], | |
}, | |
{ | |
"image": "examples/black-lamp.jpg", | |
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}], | |
}, | |
] | |
ex = gr.Examples( | |
examples=examples, | |
inputs=[annotator], | |
outputs=[oimg, dlbt], | |
fn=process_bbox, | |
cache_examples=True, | |
) | |
gr.HTML( | |
""" | |
<div class='footer-content'> | |
<p style='font-size: 1.1rem; font-weight: 500; color: #1F2937;'>끝장AI가 제공하는 고급 AI 도구를 더 경험하고 싶으신가요?</p> | |
<a href='https://finalendai.com' target='_blank' class='visit-button' style='color: white !important;'> | |
끝장AI 방문하기 | |
</a> | |
<p style='margin-top: 1.5rem; color: #6B7280; font-size: 0.9rem;'> | |
© 2024 끝장AI. All rights reserved. | |
</p> | |
</div> | |
""" | |
) | |
demo.launch(share=False) |