Spaces:
Paused
Paused
Commit
Β·
7e976f4
1
Parent(s):
adec62c
commit update
Browse files- app copy.py +144 -0
- app.py +127 -65
app copy.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import re
|
5 |
+
from sklearn.ensemble import RandomForestClassifier
|
6 |
+
from sklearn.preprocessing import LabelEncoder
|
7 |
+
from fuzzywuzzy import process
|
8 |
+
|
9 |
+
# Enhanced data generation with realistic fraud patterns
|
10 |
+
def load_data():
|
11 |
+
np.random.seed(42)
|
12 |
+
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
13 |
+
age_groups = ['18-25', '26-35', '36-45', '46-55', '56+']
|
14 |
+
incomes = ['Low', 'Medium', 'High']
|
15 |
+
|
16 |
+
data = pd.DataFrame({
|
17 |
+
'TransactionID': range(1, 1001),
|
18 |
+
'Amount': np.random.uniform(10, 15000, 1000).round(2),
|
19 |
+
'Type': np.random.choice(['Credit', 'Debit'], 1000),
|
20 |
+
'City': np.random.choice(cities, 1000),
|
21 |
+
'Age': np.random.randint(18, 70, 1000),
|
22 |
+
'Income': np.random.choice(incomes, 1000, p=[0.4, 0.4, 0.2])
|
23 |
+
})
|
24 |
+
|
25 |
+
# Create realistic fraud patterns
|
26 |
+
data['Fraud'] = 0
|
27 |
+
data.loc[
|
28 |
+
((data['Amount'] > 5000) & (data['Income'] == 'Low')) |
|
29 |
+
((data['Type'] == 'Credit') & (data['Amount'] > 8000)) |
|
30 |
+
((data['City'] == 'New York') & (data['Age'].between(20, 35)) & (data['Amount'] > 6000)),
|
31 |
+
'Fraud'
|
32 |
+
] = 1
|
33 |
+
|
34 |
+
return data
|
35 |
+
|
36 |
+
data = load_data()
|
37 |
+
|
38 |
+
# Initialize separate encoders for each feature
|
39 |
+
le_type = LabelEncoder()
|
40 |
+
le_city = LabelEncoder()
|
41 |
+
le_income = LabelEncoder()
|
42 |
+
|
43 |
+
# Fit encoders on full dataset (or training data in real scenarios)
|
44 |
+
data['Type_encoded'] = le_type.fit_transform(data['Type'])
|
45 |
+
data['City_encoded'] = le_city.fit_transform(data['City'])
|
46 |
+
data['Income_encoded'] = le_income.fit_transform(data['Income'])
|
47 |
+
|
48 |
+
# Train model
|
49 |
+
features = ['Amount', 'Type_encoded', 'City_encoded', 'Age', 'Income_encoded']
|
50 |
+
X = data[features]
|
51 |
+
y = data['Fraud']
|
52 |
+
|
53 |
+
model = RandomForestClassifier(random_state=42, n_estimators=100)
|
54 |
+
model.fit(X, y)
|
55 |
+
|
56 |
+
def process_nl_query(query):
|
57 |
+
try:
|
58 |
+
# Extract amount
|
59 |
+
amount_match = re.search(r'\$?(\d+(?:,\d{3})*(?:\.\d{2})?)', query)
|
60 |
+
if amount_match:
|
61 |
+
amount = float(amount_match.group(1).replace(',', ''))
|
62 |
+
else:
|
63 |
+
return "Error: Could not extract transaction amount."
|
64 |
+
|
65 |
+
# Extract transaction type
|
66 |
+
trans_type = 'Credit' if 'credit' in query.lower() else 'Debit'
|
67 |
+
|
68 |
+
# Fuzzy match city
|
69 |
+
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
70 |
+
city_match = process.extractOne(query, cities)
|
71 |
+
city = city_match[0] if city_match[1] > 70 else 'Unknown'
|
72 |
+
|
73 |
+
# Extract age
|
74 |
+
age_match = re.search(r'(\d+)\s*(?:years?|yrs?)?(?:\s*old)?', query)
|
75 |
+
age = int(age_match.group(1)) if age_match else None
|
76 |
+
|
77 |
+
# Extract income level
|
78 |
+
income = 'Low' if 'low' in query.lower() else \
|
79 |
+
'High' if 'high' in query.lower() else 'Medium'
|
80 |
+
|
81 |
+
# Handle unseen labels
|
82 |
+
city_encoded = le_city.transform([city])[0] if city in le_city.classes_ else -1
|
83 |
+
income_encoded = le_income.transform([income])[0] if income in le_income.classes_ else -1
|
84 |
+
|
85 |
+
# Prepare input
|
86 |
+
input_df = pd.DataFrame({
|
87 |
+
'Amount': [amount],
|
88 |
+
'Type_encoded': le_type.transform([trans_type])[0],
|
89 |
+
'City_encoded': city_encoded,
|
90 |
+
'Age': [age] if age else data['Age'].median(), # Handle missing age
|
91 |
+
'Income_encoded': income_encoded
|
92 |
+
})
|
93 |
+
|
94 |
+
# Predict
|
95 |
+
proba = model.predict_proba(input_df)[0][1]
|
96 |
+
prediction = model.predict(input_df)[0]
|
97 |
+
|
98 |
+
# Generate explanation
|
99 |
+
explanation = []
|
100 |
+
if amount > 5000 and income == 'Low':
|
101 |
+
explanation.append("High amount for low income")
|
102 |
+
if amount > 8000 and trans_type == 'Credit':
|
103 |
+
explanation.append("Unusually large credit transaction")
|
104 |
+
if city == 'New York' and 20 <= age <= 35 and amount > 6000:
|
105 |
+
explanation.append("Suspicious pattern for young adults in NYC")
|
106 |
+
|
107 |
+
return (
|
108 |
+
f"Transaction Details:\n"
|
109 |
+
f"- Amount: ${amount:,.2f}\n"
|
110 |
+
f"- Type: {trans_type}\n"
|
111 |
+
f"- City: {city}\n"
|
112 |
+
f"- Age: {age}\n"
|
113 |
+
f"- Income Level: {income}\n\n"
|
114 |
+
f"Fraud Analysis:\n"
|
115 |
+
f"- Prediction: {'Potentially Fraudulent' if prediction else 'Likely Legitimate'}\n"
|
116 |
+
f"- Confidence: {proba*100:.1f}%\n"
|
117 |
+
f"- Risk Factors: {', '.join(explanation) if explanation else 'No specific risk factors identified'}"
|
118 |
+
)
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
return f"Error processing query: {str(e)}"
|
122 |
+
|
123 |
+
# Gradio Interface
|
124 |
+
with gr.Blocks() as demo:
|
125 |
+
gr.Markdown("## Enhanced Fraud Detection System")
|
126 |
+
|
127 |
+
with gr.Tab("Natural Language Query"):
|
128 |
+
gr.Markdown("**Example:** 'Check a $6000 credit in New York for a 26-year-old with low income'")
|
129 |
+
nl_input = gr.Textbox(label="Enter your transaction query:")
|
130 |
+
nl_output = gr.Textbox(label="Fraud Analysis", lines=10)
|
131 |
+
gr.Examples(
|
132 |
+
examples=[
|
133 |
+
"Is a $8000 credit in Chicago for a 45-year-old medium income safe?",
|
134 |
+
"Verify a $300 debit in Phoenix for a 60-year-old high income client"
|
135 |
+
],
|
136 |
+
inputs=nl_input
|
137 |
+
)
|
138 |
+
nl_input.submit(fn=process_nl_query, inputs=nl_input, outputs=nl_output)
|
139 |
+
|
140 |
+
with gr.Tab("Data Insights"):
|
141 |
+
gr.Markdown("### Fraud Pattern Analysis")
|
142 |
+
gr.DataFrame(data[data['Fraud'] == 1].describe())
|
143 |
+
|
144 |
+
demo.launch()
|
app.py
CHANGED
@@ -2,15 +2,15 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import re
|
|
|
5 |
from sklearn.ensemble import RandomForestClassifier
|
6 |
from sklearn.preprocessing import LabelEncoder
|
7 |
from fuzzywuzzy import process
|
8 |
|
9 |
-
#
|
10 |
def load_data():
|
11 |
np.random.seed(42)
|
12 |
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
13 |
-
age_groups = ['18-25', '26-35', '36-45', '46-55', '56+']
|
14 |
incomes = ['Low', 'Medium', 'High']
|
15 |
|
16 |
data = pd.DataFrame({
|
@@ -22,7 +22,7 @@ def load_data():
|
|
22 |
'Income': np.random.choice(incomes, 1000, p=[0.4, 0.4, 0.2])
|
23 |
})
|
24 |
|
25 |
-
#
|
26 |
data['Fraud'] = 0
|
27 |
data.loc[
|
28 |
((data['Amount'] > 5000) & (data['Income'] == 'Low')) |
|
@@ -35,67 +35,36 @@ def load_data():
|
|
35 |
|
36 |
data = load_data()
|
37 |
|
38 |
-
# Initialize
|
39 |
le_type = LabelEncoder()
|
40 |
le_city = LabelEncoder()
|
41 |
le_income = LabelEncoder()
|
42 |
|
43 |
-
# Fit encoders on full dataset (or training data in real scenarios)
|
44 |
data['Type_encoded'] = le_type.fit_transform(data['Type'])
|
45 |
data['City_encoded'] = le_city.fit_transform(data['City'])
|
46 |
data['Income_encoded'] = le_income.fit_transform(data['Income'])
|
47 |
|
48 |
# Train model
|
49 |
-
features = ['Amount', 'Type_encoded', 'City_encoded', 'Age', 'Income_encoded']
|
50 |
-
X = data[features]
|
51 |
-
y = data['Fraud']
|
52 |
-
|
53 |
model = RandomForestClassifier(random_state=42, n_estimators=100)
|
54 |
-
model.fit(
|
55 |
|
56 |
-
|
|
|
57 |
try:
|
58 |
-
|
59 |
-
|
60 |
-
if amount_match:
|
61 |
-
amount = float(amount_match.group(1).replace(',', ''))
|
62 |
-
else:
|
63 |
-
return "Error: Could not extract transaction amount."
|
64 |
-
|
65 |
-
# Extract transaction type
|
66 |
-
trans_type = 'Credit' if 'credit' in query.lower() else 'Debit'
|
67 |
-
|
68 |
-
# Fuzzy match city
|
69 |
-
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
70 |
-
city_match = process.extractOne(query, cities)
|
71 |
-
city = city_match[0] if city_match[1] > 70 else 'Unknown'
|
72 |
-
|
73 |
-
# Extract age
|
74 |
-
age_match = re.search(r'(\d+)\s*(?:years?|yrs?)?(?:\s*old)?', query)
|
75 |
-
age = int(age_match.group(1)) if age_match else None
|
76 |
|
77 |
-
# Extract income level
|
78 |
-
income = 'Low' if 'low' in query.lower() else \
|
79 |
-
'High' if 'high' in query.lower() else 'Medium'
|
80 |
-
|
81 |
-
# Handle unseen labels
|
82 |
-
city_encoded = le_city.transform([city])[0] if city in le_city.classes_ else -1
|
83 |
-
income_encoded = le_income.transform([income])[0] if income in le_income.classes_ else -1
|
84 |
-
|
85 |
-
# Prepare input
|
86 |
input_df = pd.DataFrame({
|
87 |
'Amount': [amount],
|
88 |
'Type_encoded': le_type.transform([trans_type])[0],
|
89 |
-
'City_encoded':
|
90 |
-
'Age': [age]
|
91 |
-
'Income_encoded':
|
92 |
})
|
93 |
|
94 |
-
# Predict
|
95 |
proba = model.predict_proba(input_df)[0][1]
|
96 |
prediction = model.predict(input_df)[0]
|
97 |
|
98 |
-
# Generate explanation
|
99 |
explanation = []
|
100 |
if amount > 5000 and income == 'Low':
|
101 |
explanation.append("High amount for low income")
|
@@ -105,40 +74,133 @@ def process_nl_query(query):
|
|
105 |
explanation.append("Suspicious pattern for young adults in NYC")
|
106 |
|
107 |
return (
|
108 |
-
f"
|
109 |
-
f"
|
110 |
-
f"
|
111 |
-
f"- City: {city}\n"
|
112 |
-
f"- Age: {age}\n"
|
113 |
-
f"- Income Level: {income}\n\n"
|
114 |
-
f"Fraud Analysis:\n"
|
115 |
-
f"- Prediction: {'Potentially Fraudulent' if prediction else 'Likely Legitimate'}\n"
|
116 |
-
f"- Confidence: {proba*100:.1f}%\n"
|
117 |
-
f"- Risk Factors: {', '.join(explanation) if explanation else 'No specific risk factors identified'}"
|
118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
|
|
120 |
except Exception as e:
|
121 |
return f"Error processing query: {str(e)}"
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
# Gradio Interface
|
124 |
-
with gr.Blocks() as demo:
|
125 |
-
gr.Markdown("
|
126 |
|
127 |
-
with gr.Tab("
|
128 |
-
gr.Markdown("
|
129 |
-
|
130 |
-
|
|
|
|
|
131 |
gr.Examples(
|
132 |
examples=[
|
133 |
-
"
|
134 |
-
"Verify
|
135 |
],
|
136 |
inputs=nl_input
|
137 |
)
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
with gr.Tab("Data
|
141 |
-
gr.Markdown("
|
142 |
-
gr.DataFrame(data
|
143 |
|
144 |
demo.launch()
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import re
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
from sklearn.ensemble import RandomForestClassifier
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from fuzzywuzzy import process
|
9 |
|
10 |
+
# Data generation and preprocessing
|
11 |
def load_data():
|
12 |
np.random.seed(42)
|
13 |
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
|
|
14 |
incomes = ['Low', 'Medium', 'High']
|
15 |
|
16 |
data = pd.DataFrame({
|
|
|
22 |
'Income': np.random.choice(incomes, 1000, p=[0.4, 0.4, 0.2])
|
23 |
})
|
24 |
|
25 |
+
# Fraud patterns
|
26 |
data['Fraud'] = 0
|
27 |
data.loc[
|
28 |
((data['Amount'] > 5000) & (data['Income'] == 'Low')) |
|
|
|
35 |
|
36 |
data = load_data()
|
37 |
|
38 |
+
# Initialize encoders
|
39 |
le_type = LabelEncoder()
|
40 |
le_city = LabelEncoder()
|
41 |
le_income = LabelEncoder()
|
42 |
|
|
|
43 |
data['Type_encoded'] = le_type.fit_transform(data['Type'])
|
44 |
data['City_encoded'] = le_city.fit_transform(data['City'])
|
45 |
data['Income_encoded'] = le_income.fit_transform(data['Income'])
|
46 |
|
47 |
# Train model
|
|
|
|
|
|
|
|
|
48 |
model = RandomForestClassifier(random_state=42, n_estimators=100)
|
49 |
+
model.fit(data[['Amount', 'Type_encoded', 'City_encoded', 'Age', 'Income_encoded']], data['Fraud'])
|
50 |
|
51 |
+
# Fraud prediction function
|
52 |
+
def predict_fraud(amount, trans_type, city, age, income):
|
53 |
try:
|
54 |
+
city = city if city in le_city.classes_ else 'Unknown'
|
55 |
+
income = income if income in le_income.classes_ else 'Medium'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
input_df = pd.DataFrame({
|
58 |
'Amount': [amount],
|
59 |
'Type_encoded': le_type.transform([trans_type])[0],
|
60 |
+
'City_encoded': le_city.transform([city])[0] if city in le_city.classes_ else -1,
|
61 |
+
'Age': [age],
|
62 |
+
'Income_encoded': le_income.transform([income])[0] if income in le_income.classes_ else -1
|
63 |
})
|
64 |
|
|
|
65 |
proba = model.predict_proba(input_df)[0][1]
|
66 |
prediction = model.predict(input_df)[0]
|
67 |
|
|
|
68 |
explanation = []
|
69 |
if amount > 5000 and income == 'Low':
|
70 |
explanation.append("High amount for low income")
|
|
|
74 |
explanation.append("Suspicious pattern for young adults in NYC")
|
75 |
|
76 |
return (
|
77 |
+
f"Prediction: {'Fraudulent' if prediction else 'Legitimate'}\n"
|
78 |
+
f"Confidence: {proba*100:.1f}%\n"
|
79 |
+
f"Risk Factors: {', '.join(explanation) if explanation else 'No specific risks'}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
)
|
81 |
+
except Exception as e:
|
82 |
+
return f"Error: {str(e)}"
|
83 |
+
|
84 |
+
# NLP processing function
|
85 |
+
def process_nl_query(query):
|
86 |
+
try:
|
87 |
+
amount = float(re.search(r'\$?(\d+(?:,\d{3})*(?:\.\d{2})?)', query).group(1).replace(',', ''))
|
88 |
+
trans_type = 'Credit' if 'credit' in query.lower() else 'Debit'
|
89 |
+
city = process.extractOne(query, le_city.classes_)[0]
|
90 |
+
age_match = re.search(r'(\d+)\s*years?', query)
|
91 |
+
age = int(age_match.group(1)) if age_match else data['Age'].median()
|
92 |
+
income = 'Low' if 'low' in query.lower() else ('High' if 'high' in query.lower() else 'Medium')
|
93 |
|
94 |
+
return predict_fraud(amount, trans_type, city, age, income)
|
95 |
except Exception as e:
|
96 |
return f"Error processing query: {str(e)}"
|
97 |
|
98 |
+
# Visualization function
|
99 |
+
def create_plot(choice):
|
100 |
+
try:
|
101 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
102 |
+
|
103 |
+
if choice == "Fraud by City":
|
104 |
+
city_counts = data[data['Fraud'] == 1]['City'].value_counts()
|
105 |
+
if not city_counts.empty:
|
106 |
+
ax.bar(city_counts.index, city_counts.values)
|
107 |
+
ax.set_title('Fraud Cases by City')
|
108 |
+
ax.set_xlabel('City')
|
109 |
+
ax.set_ylabel('Count')
|
110 |
+
plt.xticks(rotation=45)
|
111 |
+
else:
|
112 |
+
ax.text(0.5, 0.5, 'No fraud data available',
|
113 |
+
ha='center', va='center')
|
114 |
+
ax.set_title('Fraud Cases by City')
|
115 |
+
|
116 |
+
elif choice == "Fraud by Income":
|
117 |
+
income_counts = data[data['Fraud'] == 1]['Income'].value_counts()
|
118 |
+
if not income_counts.empty:
|
119 |
+
ax.bar(income_counts.index, income_counts.values)
|
120 |
+
ax.set_title('Fraud Cases by Income Level')
|
121 |
+
ax.set_xlabel('Income Level')
|
122 |
+
ax.set_ylabel('Count')
|
123 |
+
else:
|
124 |
+
ax.text(0.5, 0.5, 'No fraud data available',
|
125 |
+
ha='center', va='center')
|
126 |
+
ax.set_title('Fraud Cases by Income Level')
|
127 |
+
|
128 |
+
elif choice == "Transaction Patterns":
|
129 |
+
fraud_data = data[data['Fraud'] == 1]
|
130 |
+
legit_data = data[data['Fraud'] == 0]
|
131 |
+
if not fraud_data.empty:
|
132 |
+
ax.scatter(legit_data['Amount'], legit_data['Age'],
|
133 |
+
alpha=0.3, label='Legitimate')
|
134 |
+
ax.scatter(fraud_data['Amount'], fraud_data['Age'],
|
135 |
+
color='red', alpha=0.5, label='Fraud')
|
136 |
+
ax.set_title('Transaction Amount vs Age')
|
137 |
+
ax.set_xlabel('Amount')
|
138 |
+
ax.set_ylabel('Age')
|
139 |
+
ax.legend()
|
140 |
+
else:
|
141 |
+
ax.text(0.5, 0.5, 'No fraud data available',
|
142 |
+
ha='center', va='center')
|
143 |
+
ax.set_title('Transaction Amount vs Age')
|
144 |
+
|
145 |
+
plt.tight_layout()
|
146 |
+
return fig, ""
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
plt.close()
|
150 |
+
return None, f"Error generating plot: {str(e)}"
|
151 |
+
|
152 |
# Gradio Interface
|
153 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
154 |
+
gr.Markdown("# π΅οΈ Banking Fraud Detection System")
|
155 |
|
156 |
+
with gr.Tab("π¬ NLP Query"):
|
157 |
+
gr.Markdown("## Analyze Transactions with Natural Language")
|
158 |
+
with gr.Row():
|
159 |
+
nl_input = gr.Textbox(label="Describe transaction", placeholder="e.g., 'Credit of $6000 in New York for a 26-year-old with low income'")
|
160 |
+
nl_btn = gr.Button("Analyze", variant="primary")
|
161 |
+
nl_output = gr.Textbox(label="Analysis Result", lines=4)
|
162 |
gr.Examples(
|
163 |
examples=[
|
164 |
+
"$8000 credit in Chicago for 45-year-old with medium income",
|
165 |
+
"Verify $300 debit in Phoenix for 60-year-old high income client"
|
166 |
],
|
167 |
inputs=nl_input
|
168 |
)
|
169 |
+
nl_btn.click(process_nl_query, nl_input, nl_output)
|
170 |
+
|
171 |
+
with gr.Tab("π Manual Input"):
|
172 |
+
gr.Markdown("## Manual Transaction Analysis")
|
173 |
+
with gr.Row():
|
174 |
+
amount = gr.Number(label="Amount", minimum=0)
|
175 |
+
trans_type = gr.Dropdown(["Credit", "Debit"], label="Type")
|
176 |
+
with gr.Row():
|
177 |
+
city = gr.Dropdown(le_city.classes_.tolist(), label="City")
|
178 |
+
age = gr.Number(label="Age", minimum=18)
|
179 |
+
income = gr.Dropdown(le_income.classes_.tolist(), label="Income Level")
|
180 |
+
manual_btn = gr.Button("Analyze", variant="primary")
|
181 |
+
manual_output = gr.Textbox(label="Analysis Result", lines=4)
|
182 |
+
manual_btn.click(predict_fraud, [amount, trans_type, city, age, income], manual_output)
|
183 |
+
|
184 |
+
with gr.Tab("π Data Insights"):
|
185 |
+
gr.Markdown("## Fraud Pattern Visualization")
|
186 |
+
with gr.Row():
|
187 |
+
plot_choice = gr.Radio(
|
188 |
+
["Fraud by City", "Fraud by Income", "Transaction Patterns"],
|
189 |
+
label="Select Visualization",
|
190 |
+
value="Fraud by City"
|
191 |
+
)
|
192 |
+
with gr.Row():
|
193 |
+
plot_output = gr.Plot()
|
194 |
+
error_output = gr.Textbox(label="Error Message", visible=False)
|
195 |
+
|
196 |
+
plot_choice.change(
|
197 |
+
fn=create_plot,
|
198 |
+
inputs=plot_choice,
|
199 |
+
outputs=[plot_output, error_output]
|
200 |
+
)
|
201 |
|
202 |
+
with gr.Tab("π Raw Data"):
|
203 |
+
gr.Markdown("## Complete Transaction Dataset")
|
204 |
+
gr.DataFrame(data)
|
205 |
|
206 |
demo.launch()
|