Spaces:
Paused
Paused
Commit
·
adec62c
1
Parent(s):
a6b2f62
code update
Browse files
app.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
-
import seaborn as sns
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
import re
|
7 |
from sklearn.ensemble import RandomForestClassifier
|
8 |
from sklearn.preprocessing import LabelEncoder
|
@@ -37,11 +35,15 @@ def load_data():
|
|
37 |
|
38 |
data = load_data()
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Train model
|
47 |
features = ['Amount', 'Type_encoded', 'City_encoded', 'Age', 'Income_encoded']
|
@@ -51,7 +53,6 @@ y = data['Fraud']
|
|
51 |
model = RandomForestClassifier(random_state=42, n_estimators=100)
|
52 |
model.fit(X, y)
|
53 |
|
54 |
-
# Enhanced NLP processing with fuzzy matching
|
55 |
def process_nl_query(query):
|
56 |
try:
|
57 |
# Extract amount
|
@@ -59,7 +60,7 @@ def process_nl_query(query):
|
|
59 |
if amount_match:
|
60 |
amount = float(amount_match.group(1).replace(',', ''))
|
61 |
else:
|
62 |
-
return "Error: Could not extract transaction amount.
|
63 |
|
64 |
# Extract transaction type
|
65 |
trans_type = 'Credit' if 'credit' in query.lower() else 'Debit'
|
@@ -67,26 +68,27 @@ def process_nl_query(query):
|
|
67 |
# Fuzzy match city
|
68 |
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
69 |
city_match = process.extractOne(query, cities)
|
70 |
-
city = city_match[0] if city_match[1] > 70 else
|
71 |
|
72 |
# Extract age
|
73 |
age_match = re.search(r'(\d+)\s*(?:years?|yrs?)?(?:\s*old)?', query)
|
74 |
-
if age_match
|
75 |
-
age = int(age_match.group(1))
|
76 |
-
else:
|
77 |
-
return "Error: Could not extract age. Please specify the age clearly."
|
78 |
|
79 |
# Extract income level
|
80 |
income = 'Low' if 'low' in query.lower() else \
|
81 |
'High' if 'high' in query.lower() else 'Medium'
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Prepare input
|
84 |
input_df = pd.DataFrame({
|
85 |
'Amount': [amount],
|
86 |
-
'Type_encoded':
|
87 |
-
'City_encoded':
|
88 |
-
'Age': [age],
|
89 |
-
'Income_encoded':
|
90 |
})
|
91 |
|
92 |
# Predict
|
@@ -106,7 +108,7 @@ def process_nl_query(query):
|
|
106 |
f"Transaction Details:\n"
|
107 |
f"- Amount: ${amount:,.2f}\n"
|
108 |
f"- Type: {trans_type}\n"
|
109 |
-
f"- City: {city
|
110 |
f"- Age: {age}\n"
|
111 |
f"- Income Level: {income}\n\n"
|
112 |
f"Fraud Analysis:\n"
|
@@ -116,47 +118,20 @@ def process_nl_query(query):
|
|
116 |
)
|
117 |
|
118 |
except Exception as e:
|
119 |
-
return f"Error processing query: {str(e)}
|
120 |
-
|
121 |
-
# Plotting functions
|
122 |
-
def plot_fraud_by_city():
|
123 |
-
plt.figure(figsize=(10, 6))
|
124 |
-
sns.countplot(data=data[data['Fraud'] == 1], x='City')
|
125 |
-
plt.title('Fraud Cases by City')
|
126 |
-
plt.xlabel('City')
|
127 |
-
plt.ylabel('Number of Fraud Cases')
|
128 |
-
return plt
|
129 |
-
|
130 |
-
def plot_fraud_by_income():
|
131 |
-
plt.figure(figsize=(10, 6))
|
132 |
-
sns.countplot(data=data[data['Fraud'] == 1], x='Income')
|
133 |
-
plt.title('Fraud Cases by Income Level')
|
134 |
-
plt.xlabel('Income Level')
|
135 |
-
plt.ylabel('Number of Fraud Cases')
|
136 |
-
return plt
|
137 |
-
|
138 |
-
def plot_amount_vs_age():
|
139 |
-
plt.figure(figsize=(10, 6))
|
140 |
-
sns.scatterplot(data=data, x='Amount', y='Age', hue='Fraud')
|
141 |
-
plt.title('Transaction Amount vs Age (Fraud Highlighted)')
|
142 |
-
plt.xlabel('Transaction Amount')
|
143 |
-
plt.ylabel('Age')
|
144 |
-
return plt
|
145 |
|
146 |
# Gradio Interface
|
147 |
with gr.Blocks() as demo:
|
148 |
-
gr.Markdown("##
|
149 |
|
150 |
with gr.Tab("Natural Language Query"):
|
151 |
-
gr.Markdown("**Example:** '
|
152 |
nl_input = gr.Textbox(label="Enter your transaction query:")
|
153 |
nl_output = gr.Textbox(label="Fraud Analysis", lines=10)
|
154 |
gr.Examples(
|
155 |
examples=[
|
156 |
-
"Is a $8000 credit
|
157 |
-
"
|
158 |
-
"A $12,000 credit transaction occurred in Los Angeles for a 30-year-old with low income. Should I be concerned?",
|
159 |
-
"Verify a $5,500 debit in New York by a 22-year-old medium income individual"
|
160 |
],
|
161 |
inputs=nl_input
|
162 |
)
|
@@ -165,9 +140,5 @@ with gr.Blocks() as demo:
|
|
165 |
with gr.Tab("Data Insights"):
|
166 |
gr.Markdown("### Fraud Pattern Analysis")
|
167 |
gr.DataFrame(data[data['Fraud'] == 1].describe())
|
168 |
-
with gr.Row():
|
169 |
-
gr.Plot(plot_fraud_by_city)
|
170 |
-
gr.Plot(plot_fraud_by_income)
|
171 |
-
gr.Plot(plot_amount_vs_age)
|
172 |
|
173 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
|
|
|
|
4 |
import re
|
5 |
from sklearn.ensemble import RandomForestClassifier
|
6 |
from sklearn.preprocessing import LabelEncoder
|
|
|
35 |
|
36 |
data = load_data()
|
37 |
|
38 |
+
# Initialize separate encoders for each feature
|
39 |
+
le_type = LabelEncoder()
|
40 |
+
le_city = LabelEncoder()
|
41 |
+
le_income = LabelEncoder()
|
42 |
+
|
43 |
+
# Fit encoders on full dataset (or training data in real scenarios)
|
44 |
+
data['Type_encoded'] = le_type.fit_transform(data['Type'])
|
45 |
+
data['City_encoded'] = le_city.fit_transform(data['City'])
|
46 |
+
data['Income_encoded'] = le_income.fit_transform(data['Income'])
|
47 |
|
48 |
# Train model
|
49 |
features = ['Amount', 'Type_encoded', 'City_encoded', 'Age', 'Income_encoded']
|
|
|
53 |
model = RandomForestClassifier(random_state=42, n_estimators=100)
|
54 |
model.fit(X, y)
|
55 |
|
|
|
56 |
def process_nl_query(query):
|
57 |
try:
|
58 |
# Extract amount
|
|
|
60 |
if amount_match:
|
61 |
amount = float(amount_match.group(1).replace(',', ''))
|
62 |
else:
|
63 |
+
return "Error: Could not extract transaction amount."
|
64 |
|
65 |
# Extract transaction type
|
66 |
trans_type = 'Credit' if 'credit' in query.lower() else 'Debit'
|
|
|
68 |
# Fuzzy match city
|
69 |
cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
|
70 |
city_match = process.extractOne(query, cities)
|
71 |
+
city = city_match[0] if city_match[1] > 70 else 'Unknown'
|
72 |
|
73 |
# Extract age
|
74 |
age_match = re.search(r'(\d+)\s*(?:years?|yrs?)?(?:\s*old)?', query)
|
75 |
+
age = int(age_match.group(1)) if age_match else None
|
|
|
|
|
|
|
76 |
|
77 |
# Extract income level
|
78 |
income = 'Low' if 'low' in query.lower() else \
|
79 |
'High' if 'high' in query.lower() else 'Medium'
|
80 |
+
|
81 |
+
# Handle unseen labels
|
82 |
+
city_encoded = le_city.transform([city])[0] if city in le_city.classes_ else -1
|
83 |
+
income_encoded = le_income.transform([income])[0] if income in le_income.classes_ else -1
|
84 |
|
85 |
# Prepare input
|
86 |
input_df = pd.DataFrame({
|
87 |
'Amount': [amount],
|
88 |
+
'Type_encoded': le_type.transform([trans_type])[0],
|
89 |
+
'City_encoded': city_encoded,
|
90 |
+
'Age': [age] if age else data['Age'].median(), # Handle missing age
|
91 |
+
'Income_encoded': income_encoded
|
92 |
})
|
93 |
|
94 |
# Predict
|
|
|
108 |
f"Transaction Details:\n"
|
109 |
f"- Amount: ${amount:,.2f}\n"
|
110 |
f"- Type: {trans_type}\n"
|
111 |
+
f"- City: {city}\n"
|
112 |
f"- Age: {age}\n"
|
113 |
f"- Income Level: {income}\n\n"
|
114 |
f"Fraud Analysis:\n"
|
|
|
118 |
)
|
119 |
|
120 |
except Exception as e:
|
121 |
+
return f"Error processing query: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
# Gradio Interface
|
124 |
with gr.Blocks() as demo:
|
125 |
+
gr.Markdown("## Enhanced Fraud Detection System")
|
126 |
|
127 |
with gr.Tab("Natural Language Query"):
|
128 |
+
gr.Markdown("**Example:** 'Check a $6000 credit in New York for a 26-year-old with low income'")
|
129 |
nl_input = gr.Textbox(label="Enter your transaction query:")
|
130 |
nl_output = gr.Textbox(label="Fraud Analysis", lines=10)
|
131 |
gr.Examples(
|
132 |
examples=[
|
133 |
+
"Is a $8000 credit in Chicago for a 45-year-old medium income safe?",
|
134 |
+
"Verify a $300 debit in Phoenix for a 60-year-old high income client"
|
|
|
|
|
135 |
],
|
136 |
inputs=nl_input
|
137 |
)
|
|
|
140 |
with gr.Tab("Data Insights"):
|
141 |
gr.Markdown("### Fraud Pattern Analysis")
|
142 |
gr.DataFrame(data[data['Fraud'] == 1].describe())
|
|
|
|
|
|
|
|
|
143 |
|
144 |
demo.launch()
|