File size: 4,460 Bytes
f995cde
1aaec00
f995cde
1aaec00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f995cde
 
 
1aaec00
 
 
f995cde
 
1aaec00
 
 
 
f995cde
fa0a856
1aaec00
 
 
 
 
 
 
 
 
 
fa0a856
f995cde
1aaec00
f995cde
1aaec00
55ca2dd
 
fa0a856
1aaec00
 
 
 
 
 
 
 
 
 
 
 
f995cde
1aaec00
55ca2dd
f995cde
 
 
1aaec00
f995cde
 
 
 
55ca2dd
f995cde
1aaec00
 
 
 
55ca2dd
f995cde
55ca2dd
fa0a856
f995cde
 
 
 
 
 
 
55ca2dd
 
f995cde
 
 
 
 
 
 
 
 
 
 
fa0a856
55ca2dd
 
 
 
 
 
 
 
 
f995cde
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from huggingface_hub import login
import os

def init_huggingface():
    """Initialize Hugging Face authentication either from secrets or user input"""
    if 'HUGGING_FACE_TOKEN' not in st.session_state:
        # First try to get from environment variable
        token = os.getenv('HUGGINGFACE_TOKEN')
        
        # If not in environment, check streamlit secrets
        if not token and 'huggingface_token' in st.secrets:
            token = st.secrets['huggingface_token']
            
        # If still not found, ask user
        if not token:
            token = st.text_input('Enter your Hugging Face token:', type='password')
            if not token:
                st.warning('Please enter your Hugging Face token to proceed')
                st.stop()
        
        st.session_state['HUGGING_FACE_TOKEN'] = token
    
    # Login to Hugging Face
    login(st.session_state['HUGGING_FACE_TOKEN'])
    return True

class LlamaDemo:
    def __init__(self):
        self.model_name = "meta-llama/Llama-2-70b-chat-hf"
        self._model = None
        self._tokenizer = None
        
    @property
    def model(self):
        if self._model is None:
            self._model = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                torch_dtype=torch.float16,
                device_map="auto",
                trust_remote_code=True,
                load_in_8bit=True  # Para optimizar memoria
            )
        return self._model
    
    @property
    def tokenizer(self):
        if self._tokenizer is None:
            self._tokenizer = AutoTokenizer.from_pretrained(
                self.model_name,
                trust_remote_code=True
            )
        return self._tokenizer

    def generate_response(self, prompt: str, max_new_tokens: int = 512) -> str:
        # Format prompt for Llama 2 chat
        formatted_prompt = f"[INST] {prompt} [/INST]"
        
        inputs = self.tokenizer(formatted_prompt, return_tensors="pt").to(self.model.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=max_new_tokens,
                num_return_sequences=1,
                temperature=0.7,
                do_sample=True,
                top_p=0.9,
                pad_token_id=self.tokenizer.eos_token_id
            )
        
        response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response.split("[/INST]")[-1].strip()

def main():
    st.set_page_config(
        page_title="Llama 2 Demo",
        page_icon="🦙",
        layout="wide"
    )
    
    st.title("🦙 Llama 2 Chat Demo")
    
    # Initialize Hugging Face authentication
    if init_huggingface():
        st.success("Successfully authenticated with Hugging Face!")
    
    # Initialize model
    if 'llama' not in st.session_state:
        with st.spinner("Loading Llama 2... This might take a few minutes..."):
            st.session_state.llama = LlamaDemo()
    
    if 'chat_history' not in st.session_state:
        st.session_state.chat_history = []
        
    # Chat interface
    with st.container():
        for message in st.session_state.chat_history:
            with st.chat_message(message["role"]):
                st.write(message["content"])
    
        if prompt := st.chat_input("What would you like to discuss?"):
            st.session_state.chat_history.append({
                "role": "user",
                "content": prompt
            })
            
            with st.chat_message("user"):
                st.write(prompt)
            
            with st.chat_message("assistant"):
                with st.spinner("Thinking..."):
                    try:
                        response = st.session_state.llama.generate_response(prompt)
                        st.write(response)
                        st.session_state.chat_history.append({
                            "role": "assistant",
                            "content": response
                        })
                    except Exception as e:
                        st.error(f"Error: {str(e)}")
    
    with st.sidebar:
        if st.button("Clear Chat History"):
            st.session_state.chat_history = []
            st.experimental_rerun()

if __name__ == "__main__":
    main()