Create semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#semantic_analysis.py
|
2 |
+
import streamlit as st
|
3 |
+
import spacy
|
4 |
+
import networkx as nx
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from collections import Counter
|
7 |
+
from collections import defaultdict
|
8 |
+
|
9 |
+
# Define colors for grammatical categories
|
10 |
+
POS_COLORS = {
|
11 |
+
'ADJ': '#FFA07A', # Light Salmon
|
12 |
+
'ADP': '#98FB98', # Pale Green
|
13 |
+
'ADV': '#87CEFA', # Light Sky Blue
|
14 |
+
'AUX': '#DDA0DD', # Plum
|
15 |
+
'CCONJ': '#F0E68C', # Khaki
|
16 |
+
'DET': '#FFB6C1', # Light Pink
|
17 |
+
'INTJ': '#FF6347', # Tomato
|
18 |
+
'NOUN': '#90EE90', # Light Green
|
19 |
+
'NUM': '#FAFAD2', # Light Goldenrod Yellow
|
20 |
+
'PART': '#D3D3D3', # Light Gray
|
21 |
+
'PRON': '#FFA500', # Orange
|
22 |
+
'PROPN': '#20B2AA', # Light Sea Green
|
23 |
+
'SCONJ': '#DEB887', # Burlywood
|
24 |
+
'SYM': '#7B68EE', # Medium Slate Blue
|
25 |
+
'VERB': '#FF69B4', # Hot Pink
|
26 |
+
'X': '#A9A9A9', # Dark Gray
|
27 |
+
}
|
28 |
+
|
29 |
+
POS_TRANSLATIONS = {
|
30 |
+
'es': {
|
31 |
+
'ADJ': 'Adjetivo',
|
32 |
+
'ADP': 'Adposici贸n',
|
33 |
+
'ADV': 'Adverbio',
|
34 |
+
'AUX': 'Auxiliar',
|
35 |
+
'CCONJ': 'Conjunci贸n Coordinante',
|
36 |
+
'DET': 'Determinante',
|
37 |
+
'INTJ': 'Interjecci贸n',
|
38 |
+
'NOUN': 'Sustantivo',
|
39 |
+
'NUM': 'N煤mero',
|
40 |
+
'PART': 'Part铆cula',
|
41 |
+
'PRON': 'Pronombre',
|
42 |
+
'PROPN': 'Nombre Propio',
|
43 |
+
'SCONJ': 'Conjunci贸n Subordinante',
|
44 |
+
'SYM': 'S铆mbolo',
|
45 |
+
'VERB': 'Verbo',
|
46 |
+
'X': 'Otro',
|
47 |
+
},
|
48 |
+
'en': {
|
49 |
+
'ADJ': 'Adjective',
|
50 |
+
'ADP': 'Adposition',
|
51 |
+
'ADV': 'Adverb',
|
52 |
+
'AUX': 'Auxiliary',
|
53 |
+
'CCONJ': 'Coordinating Conjunction',
|
54 |
+
'DET': 'Determiner',
|
55 |
+
'INTJ': 'Interjection',
|
56 |
+
'NOUN': 'Noun',
|
57 |
+
'NUM': 'Number',
|
58 |
+
'PART': 'Particle',
|
59 |
+
'PRON': 'Pronoun',
|
60 |
+
'PROPN': 'Proper Noun',
|
61 |
+
'SCONJ': 'Subordinating Conjunction',
|
62 |
+
'SYM': 'Symbol',
|
63 |
+
'VERB': 'Verb',
|
64 |
+
'X': 'Other',
|
65 |
+
},
|
66 |
+
'fr': {
|
67 |
+
'ADJ': 'Adjectif',
|
68 |
+
'ADP': 'Adposition',
|
69 |
+
'ADV': 'Adverbe',
|
70 |
+
'AUX': 'Auxiliaire',
|
71 |
+
'CCONJ': 'Conjonction de Coordination',
|
72 |
+
'DET': 'D茅terminant',
|
73 |
+
'INTJ': 'Interjection',
|
74 |
+
'NOUN': 'Nom',
|
75 |
+
'NUM': 'Nombre',
|
76 |
+
'PART': 'Particule',
|
77 |
+
'PRON': 'Pronom',
|
78 |
+
'PROPN': 'Nom Propre',
|
79 |
+
'SCONJ': 'Conjonction de Subordination',
|
80 |
+
'SYM': 'Symbole',
|
81 |
+
'VERB': 'Verbe',
|
82 |
+
'X': 'Autre',
|
83 |
+
}
|
84 |
+
}
|
85 |
+
########################################################################################################################################
|
86 |
+
|
87 |
+
# Definimos las etiquetas y colores para cada idioma
|
88 |
+
ENTITY_LABELS = {
|
89 |
+
'es': {
|
90 |
+
"Personas": "lightblue",
|
91 |
+
"Conceptos": "lightgreen",
|
92 |
+
"Lugares": "lightcoral",
|
93 |
+
"Fechas": "lightyellow"
|
94 |
+
},
|
95 |
+
'en': {
|
96 |
+
"People": "lightblue",
|
97 |
+
"Concepts": "lightgreen",
|
98 |
+
"Places": "lightcoral",
|
99 |
+
"Dates": "lightyellow"
|
100 |
+
},
|
101 |
+
'fr': {
|
102 |
+
"Personnes": "lightblue",
|
103 |
+
"Concepts": "lightgreen",
|
104 |
+
"Lieux": "lightcoral",
|
105 |
+
"Dates": "lightyellow"
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
#########################################################################################################
|
110 |
+
def count_pos(doc):
|
111 |
+
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')
|
112 |
+
|
113 |
+
#####################################################################################################################
|
114 |
+
|
115 |
+
def create_semantic_graph(doc, lang):
|
116 |
+
G = nx.Graph()
|
117 |
+
word_freq = defaultdict(int)
|
118 |
+
lemma_to_word = {}
|
119 |
+
lemma_to_pos = {}
|
120 |
+
|
121 |
+
# Count frequencies of lemmas and map lemmas to their most common word form and POS
|
122 |
+
for token in doc:
|
123 |
+
if token.pos_ in ['NOUN', 'VERB']:
|
124 |
+
lemma = token.lemma_.lower()
|
125 |
+
word_freq[lemma] += 1
|
126 |
+
if lemma not in lemma_to_word or token.text.lower() == lemma:
|
127 |
+
lemma_to_word[lemma] = token.text
|
128 |
+
lemma_to_pos[lemma] = token.pos_
|
129 |
+
|
130 |
+
# Get top 20 most frequent lemmas
|
131 |
+
top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]
|
132 |
+
|
133 |
+
# Add nodes
|
134 |
+
for lemma in top_lemmas:
|
135 |
+
word = lemma_to_word[lemma]
|
136 |
+
G.add_node(word, pos=lemma_to_pos[lemma])
|
137 |
+
|
138 |
+
# Add edges
|
139 |
+
for token in doc:
|
140 |
+
if token.lemma_.lower() in top_lemmas:
|
141 |
+
if token.head.lemma_.lower() in top_lemmas:
|
142 |
+
source = lemma_to_word[token.lemma_.lower()]
|
143 |
+
target = lemma_to_word[token.head.lemma_.lower()]
|
144 |
+
if source != target: # Avoid self-loops
|
145 |
+
G.add_edge(source, target, label=token.dep_)
|
146 |
+
|
147 |
+
return G, word_freq
|
148 |
+
|
149 |
+
############################################################################################################################################
|
150 |
+
|
151 |
+
def visualize_semantic_relations(doc, lang):
|
152 |
+
G = nx.Graph()
|
153 |
+
word_freq = defaultdict(int)
|
154 |
+
lemma_to_word = {}
|
155 |
+
lemma_to_pos = {}
|
156 |
+
|
157 |
+
# Count frequencies of lemmas and map lemmas to their most common word form and POS
|
158 |
+
for token in doc:
|
159 |
+
if token.pos_ in ['NOUN', 'VERB']:
|
160 |
+
lemma = token.lemma_.lower()
|
161 |
+
word_freq[lemma] += 1
|
162 |
+
if lemma not in lemma_to_word or token.text.lower() == lemma:
|
163 |
+
lemma_to_word[lemma] = token.text
|
164 |
+
lemma_to_pos[lemma] = token.pos_
|
165 |
+
|
166 |
+
# Get top 20 most frequent lemmas
|
167 |
+
top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]
|
168 |
+
|
169 |
+
# Add nodes
|
170 |
+
for lemma in top_lemmas:
|
171 |
+
word = lemma_to_word[lemma]
|
172 |
+
G.add_node(word, pos=lemma_to_pos[lemma])
|
173 |
+
|
174 |
+
# Add edges
|
175 |
+
for token in doc:
|
176 |
+
if token.lemma_.lower() in top_lemmas:
|
177 |
+
if token.head.lemma_.lower() in top_lemmas:
|
178 |
+
source = lemma_to_word[token.lemma_.lower()]
|
179 |
+
target = lemma_to_word[token.head.lemma_.lower()]
|
180 |
+
if source != target: # Avoid self-loops
|
181 |
+
G.add_edge(source, target, label=token.dep_)
|
182 |
+
|
183 |
+
fig, ax = plt.subplots(figsize=(36, 27))
|
184 |
+
pos = nx.spring_layout(G, k=0.7, iterations=50)
|
185 |
+
|
186 |
+
node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()]
|
187 |
+
|
188 |
+
nx.draw(G, pos, node_color=node_colors, with_labels=True,
|
189 |
+
node_size=10000,
|
190 |
+
font_size=16,
|
191 |
+
font_weight='bold',
|
192 |
+
arrows=True,
|
193 |
+
arrowsize=30,
|
194 |
+
width=3,
|
195 |
+
edge_color='gray',
|
196 |
+
ax=ax)
|
197 |
+
|
198 |
+
edge_labels = nx.get_edge_attributes(G, 'label')
|
199 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, ax=ax)
|
200 |
+
|
201 |
+
title = {
|
202 |
+
'es': "Relaciones Sem谩nticas Relevantes",
|
203 |
+
'en': "Relevant Semantic Relations",
|
204 |
+
'fr': "Relations S茅mantiques Pertinentes"
|
205 |
+
}
|
206 |
+
ax.set_title(title[lang], fontsize=24, fontweight='bold')
|
207 |
+
ax.axis('off')
|
208 |
+
|
209 |
+
legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
|
210 |
+
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
|
211 |
+
for pos in ['NOUN', 'VERB']]
|
212 |
+
ax.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=16)
|
213 |
+
|
214 |
+
return fig
|
215 |
+
|
216 |
+
############################################################################################################################################
|
217 |
+
def identify_and_contextualize_entities(doc, lang):
|
218 |
+
entities = []
|
219 |
+
for ent in doc.ents:
|
220 |
+
# Obtener el contexto (3 palabras antes y despu茅s de la entidad)
|
221 |
+
start = max(0, ent.start - 3)
|
222 |
+
end = min(len(doc), ent.end + 3)
|
223 |
+
context = doc[start:end].text
|
224 |
+
|
225 |
+
entities.append({
|
226 |
+
'text': ent.text,
|
227 |
+
'label': ent.label_,
|
228 |
+
'start': ent.start,
|
229 |
+
'end': ent.end,
|
230 |
+
'context': context
|
231 |
+
})
|
232 |
+
|
233 |
+
# Identificar conceptos clave (usando sustantivos y verbos m谩s frecuentes)
|
234 |
+
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
|
235 |
+
key_concepts = word_freq.most_common(10) # Top 10 conceptos clave
|
236 |
+
|
237 |
+
return entities, key_concepts
|
238 |
+
|
239 |
+
|
240 |
+
############################################################################################################################################
|
241 |
+
def perform_semantic_analysis(text, nlp, lang):
|
242 |
+
doc = nlp(text)
|
243 |
+
|
244 |
+
# Identificar entidades y conceptos clave
|
245 |
+
entities, key_concepts = identify_and_contextualize_entities(doc, lang)
|
246 |
+
|
247 |
+
# Visualizar relaciones sem谩nticas
|
248 |
+
relations_graph = visualize_semantic_relations(doc, lang)
|
249 |
+
|
250 |
+
# Imprimir entidades para depuraci贸n
|
251 |
+
print(f"Entidades encontradas ({lang}):")
|
252 |
+
for ent in doc.ents:
|
253 |
+
print(f"{ent.text} - {ent.label_}")
|
254 |
+
|
255 |
+
relations_graph = visualize_semantic_relations(doc, lang)
|
256 |
+
return {
|
257 |
+
'entities': entities,
|
258 |
+
'key_concepts': key_concepts,
|
259 |
+
'relations_graph': relations_graph
|
260 |
+
}
|
261 |
+
|
262 |
+
__all__ = ['visualize_semantic_relations', 'create_semantic_graph', 'POS_COLORS', 'POS_TRANSLATIONS', 'identify_and_contextualize_entities']
|