File size: 10,586 Bytes
831e193
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ee9f7
 
831e193
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ee9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831e193
 
 
 
b6ee9f7
 
831e193
 
b6ee9f7
 
 
 
 
 
 
 
 
 
831e193
 
b6ee9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831e193
b6ee9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831e193
 
 
 
 
 
 
 
 
 
 
 
b6ee9f7
 
 
 
 
 
 
 
 
 
 
831e193
b6ee9f7
831e193
 
 
b6ee9f7
831e193
 
 
 
 
 
 
 
 
 
 
b6ee9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy
from spacy import displacy
import spacy_streamlit
import pandas as pd
import base64
import re

from .morphosyntax_process import (
    process_morphosyntactic_input,
    format_analysis_results,
    perform_advanced_morphosyntactic_analysis,
    get_repeated_words_colors,
    highlight_repeated_words,
    POS_COLORS,
    POS_TRANSLATIONS
)

from ..utils.widget_utils import generate_unique_key
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result
from ..database.chat_mongo_db import store_chat_history, get_chat_history

import logging
logger = logging.getLogger(__name__)

def display_morphosyntax_interface(lang_code, nlp_models, morpho_t):
    try:
        # CSS para mejorar la estabilidad y prevenir saltos
        st.markdown("""
            <style>
            .stTextArea textarea {
                font-size: 1rem;
                line-height: 1.5;
                resize: vertical;
            }
            .block-container {
                padding-top: 1rem;
                padding-bottom: 1rem;
            }
            .stExpander {
                border: none;
                box-shadow: 0 1px 2px rgba(0,0,0,0.1);
                margin-bottom: 1rem;
            }
            .legend-container {
                position: sticky;
                top: 0;
                background: white;
                z-index: 100;
                padding: 0.5rem 0;
                border-bottom: 1px solid #eee;
            }
            </style>
        """, unsafe_allow_html=True)

        # 1. Inicializar el estado
        if 'morphosyntax_state' not in st.session_state:
            st.session_state.morphosyntax_state = {
                'input_text': "",
                'analysis_count': 0,
                'last_analysis': None,
                'current_tab': 0
            }

        # 2. Contenedor principal con diseño sticky
        with st.container():
            # Campo de entrada de texto
            input_key = f"morpho_input_{st.session_state.morphosyntax_state['analysis_count']}"
            sentence_input = st.text_area(
                morpho_t.get('morpho_input_label', 'Enter text to analyze'),
                height=150,
                placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'),
                key=input_key,
                on_change=lambda: None  # Previene recargas innecesarias
            )

            # 3. Botón de análisis centrado
            col1, col2, col3 = st.columns([2,1,2])
            with col1:
                analyze_button = st.button(
                    morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'),
                    key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}",
                    type="primary",
                    icon="🔍",
                    disabled=not bool(sentence_input.strip()),
                    use_container_width=True
                )

            # 4. Procesar análisis
            if analyze_button and sentence_input.strip():
                try:
                    with st.spinner(morpho_t.get('processing', 'Processing...')):
                        doc = nlp_models[lang_code](sentence_input)
                        advanced_analysis = perform_advanced_morphosyntactic_analysis(
                            sentence_input,
                            nlp_models[lang_code]
                        )

                        st.session_state.morphosyntax_result = {
                            'doc': doc,
                            'advanced_analysis': advanced_analysis
                        }
                        st.session_state.morphosyntax_state['analysis_count'] += 1

                        # Guardar resultado
                        if store_student_morphosyntax_result(
                            username=st.session_state.username,
                            text=sentence_input,
                            arc_diagrams=advanced_analysis['arc_diagrams']
                        ):
                            st.success(morpho_t.get('success_message', 'Analysis saved successfully'))
                            st.session_state.morphosyntax_state['current_tab'] = 0
                            display_morphosyntax_results(
                                st.session_state.morphosyntax_result,
                                lang_code,
                                morpho_t
                            )
                        else:
                            st.error(morpho_t.get('error_message', 'Error saving analysis'))

                except Exception as e:
                    logger.error(f"Error en análisis morfosintáctico: {str(e)}")
                    st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}'))

            # 5. Mostrar resultados previos
            elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result:
                display_morphosyntax_results(
                    st.session_state.morphosyntax_result,
                    lang_code,
                    morpho_t
                )
            elif not sentence_input.strip():
                st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis'))

    except Exception as e:
        logger.error(f"Error general en display_morphosyntax_interface: {str(e)}")
        st.error("Se produjo un error. Por favor, intente de nuevo.")

def display_morphosyntax_results(result, lang_code, morpho_t):
    if result is None:
        st.warning(morpho_t.get('no_results', 'No results available'))
        return

    doc = result['doc']
    advanced_analysis = result['advanced_analysis']

    # Leyenda fija en la parte superior
    with st.container():
        st.markdown(f"##### {morpho_t.get('legend', 'Legend: Grammatical categories')}")
        legend_html = "<div class='legend-container'><div style='display: flex; flex-wrap: wrap;'>"
        for pos, color in POS_COLORS.items():
            if pos in POS_TRANSLATIONS[lang_code]:
                legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>"
        legend_html += "</div></div>"
        st.markdown(legend_html, unsafe_allow_html=True)

    # Palabras repetidas
    with st.expander(morpho_t.get('repeated_words', 'Repeated words'), expanded=True):
        word_colors = get_repeated_words_colors(doc)
        highlighted_text = highlight_repeated_words(doc, word_colors)
        st.markdown(highlighted_text, unsafe_allow_html=True)

    # Análisis sintáctico (diagramas de arco)
    with st.expander(morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram'), expanded=True):
        sentences = list(doc.sents)
        for i, sent in enumerate(sentences):
            st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}")
            html = displacy.render(sent, style="dep", options={"distance": 100})
            html = html.replace('height="375"', 'height="200"')
            html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
            html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', 
                         lambda m: f'<g transform="translate({m.group(1)},50)"', html)
            st.write(html, unsafe_allow_html=True)

    # Estructura de oraciones
    with st.expander(morpho_t.get('sentence_structure', 'Sentence structure'), expanded=True):
        for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']):
            sentence_str = (
                f"**{morpho_t.get('sentence', 'Sentence')} {i+1}** "
                f"{morpho_t.get('root', 'Root')}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- "
                f"{morpho_t.get('subjects', 'Subjects')}: {', '.join(sent_analysis['subjects'])} -- "
                f"{morpho_t.get('objects', 'Objects')}: {', '.join(sent_analysis['objects'])} -- "
                f"{morpho_t.get('verbs', 'Verbs')}: {', '.join(sent_analysis['verbs'])}"
            )
            st.markdown(sentence_str)

    # Análisis de categorías gramaticales
    with st.expander(morpho_t.get('pos_analysis', 'Part of speech'), expanded=True):
        pos_df = pd.DataFrame(advanced_analysis['pos_analysis'])
        pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
        pos_df = pos_df.rename(columns={
            'pos': morpho_t.get('grammatical_category', 'Grammatical category'),
            'count': morpho_t.get('count', 'Count'),
            'percentage': morpho_t.get('percentage', 'Percentage'),
            'examples': morpho_t.get('examples', 'Examples')
        })
        st.dataframe(pos_df, use_container_width=True)

    # Análisis morfológico
    with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True):
        morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
        column_mapping = {
            'text': morpho_t.get('word', 'Word'),
            'lemma': morpho_t.get('lemma', 'Lemma'),
            'pos': morpho_t.get('grammatical_category', 'Grammatical category'),
            'dep': morpho_t.get('dependency', 'Dependency'),
            'morph': morpho_t.get('morphology', 'Morphology')
        }
        morph_df = morph_df.rename(columns=column_mapping)
        
        # Traducir categorías gramaticales
        grammatical_category = morpho_t.get('grammatical_category', 'Grammatical category')
        morph_df[grammatical_category] = morph_df[grammatical_category].map(
            lambda x: POS_TRANSLATIONS[lang_code].get(x, x)
        )

        # Aplicar traducciones de dependencias y morfología
        dependency = morpho_t.get('dependency', 'Dependency')
        morphology = morpho_t.get('morphology', 'Morphology')
        
        def translate_morph(morph_string, lang_code):
            for key, value in morph_translations[lang_code].items():
                morph_string = morph_string.replace(key, value)
            return morph_string

        morph_df[dependency] = morph_df[dependency].map(
            lambda x: dep_translations[lang_code].get(x, x)
        )
        morph_df[morphology] = morph_df[morphology].apply(
            lambda x: translate_morph(x, lang_code)
        )
        
        st.dataframe(morph_df, use_container_width=True)