|
|
|
|
|
|
|
import logging |
|
import io |
|
import base64 |
|
from collections import Counter, defaultdict |
|
|
|
|
|
import streamlit as st |
|
import spacy |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
from .stopwords import ( |
|
process_text, |
|
clean_text, |
|
get_custom_stopwords, |
|
get_stopwords_for_spacy |
|
) |
|
|
|
|
|
|
|
POS_COLORS = { |
|
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', |
|
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', |
|
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', |
|
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', |
|
} |
|
|
|
POS_TRANSLATIONS = { |
|
'es': { |
|
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', |
|
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', |
|
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', |
|
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', |
|
'VERB': 'Verbo', 'X': 'Otro', |
|
}, |
|
'en': { |
|
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', |
|
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', |
|
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', |
|
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', |
|
'VERB': 'Verb', 'X': 'Other', |
|
}, |
|
'fr': { |
|
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', |
|
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', |
|
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', |
|
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', |
|
'VERB': 'Verbe', 'X': 'Autre', |
|
} |
|
} |
|
|
|
ENTITY_LABELS = { |
|
'es': { |
|
"Personas": "lightblue", |
|
"Lugares": "lightcoral", |
|
"Inventos": "lightgreen", |
|
"Fechas": "lightyellow", |
|
"Conceptos": "lightpink" |
|
}, |
|
'en': { |
|
"People": "lightblue", |
|
"Places": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
}, |
|
'fr': { |
|
"Personnes": "lightblue", |
|
"Lieux": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
} |
|
} |
|
|
|
def fig_to_bytes(fig): |
|
"""Convierte una figura de matplotlib a bytes.""" |
|
try: |
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') |
|
buf.seek(0) |
|
return buf.getvalue() |
|
except Exception as e: |
|
logger.error(f"Error en fig_to_bytes: {str(e)}") |
|
return None |
|
|
|
|
|
def perform_semantic_analysis(text, nlp, lang_code): |
|
""" |
|
Realiza el análisis semántico completo del texto. |
|
""" |
|
if not text or not nlp or not lang_code: |
|
logger.error("Parámetros inválidos para el análisis semántico") |
|
return { |
|
'success': False, |
|
'error': 'Parámetros inválidos' |
|
} |
|
|
|
try: |
|
logger.info(f"Starting semantic analysis for language: {lang_code}") |
|
|
|
|
|
doc = nlp(text) |
|
if not doc: |
|
logger.error("Error al procesar el texto con spaCy") |
|
return { |
|
'success': False, |
|
'error': 'Error al procesar el texto' |
|
} |
|
|
|
|
|
logger.info("Identificando conceptos clave...") |
|
stopwords = get_custom_stopwords(lang_code) |
|
key_concepts = identify_key_concepts(doc, stopwords=stopwords) |
|
|
|
if not key_concepts: |
|
logger.warning("No se identificaron conceptos clave") |
|
return { |
|
'success': False, |
|
'error': 'No se pudieron identificar conceptos clave' |
|
} |
|
|
|
|
|
logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...") |
|
concept_graph = create_concept_graph(doc, key_concepts) |
|
|
|
if not concept_graph.nodes(): |
|
logger.warning("Se creó un grafo vacío") |
|
return { |
|
'success': False, |
|
'error': 'No se pudo crear el grafo de conceptos' |
|
} |
|
|
|
|
|
logger.info("Visualizando grafo...") |
|
plt.clf() |
|
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) |
|
|
|
|
|
logger.info("Convirtiendo grafo a bytes...") |
|
graph_bytes = fig_to_bytes(concept_graph_fig) |
|
|
|
if not graph_bytes: |
|
logger.error("Error al convertir grafo a bytes") |
|
return { |
|
'success': False, |
|
'error': 'Error al generar visualización' |
|
} |
|
|
|
|
|
plt.close(concept_graph_fig) |
|
plt.close('all') |
|
|
|
result = { |
|
'success': True, |
|
'key_concepts': key_concepts, |
|
'concept_graph': graph_bytes |
|
} |
|
|
|
logger.info("Análisis semántico completado exitosamente") |
|
return result |
|
|
|
except Exception as e: |
|
logger.error(f"Error in perform_semantic_analysis: {str(e)}") |
|
plt.close('all') |
|
return { |
|
'success': False, |
|
'error': str(e) |
|
} |
|
finally: |
|
plt.close('all') |
|
|
|
|
|
|
|
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3): |
|
""" |
|
Identifica conceptos clave en el texto, excluyendo entidades nombradas. |
|
Args: |
|
doc: Documento procesado por spaCy |
|
stopwords: Lista de stopwords |
|
min_freq: Frecuencia mínima para considerar un concepto |
|
min_length: Longitud mínima del concepto |
|
Returns: |
|
List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia) |
|
""" |
|
try: |
|
word_freq = Counter() |
|
|
|
|
|
entity_tokens = set() |
|
for ent in doc.ents: |
|
entity_tokens.update(token.i for token in ent) |
|
|
|
|
|
for token in doc: |
|
|
|
if (token.i not in entity_tokens and |
|
token.lemma_.lower() not in stopwords and |
|
len(token.lemma_) >= min_length and |
|
token.is_alpha and |
|
not token.is_punct and |
|
not token.like_num and |
|
not token.is_space and |
|
not token.is_stop and |
|
not token.pos_ == 'PROPN' and |
|
not token.pos_ == 'SYM' and |
|
not token.pos_ == 'NUM' and |
|
not token.pos_ == 'X'): |
|
|
|
|
|
word_freq[token.lemma_.lower()] += 1 |
|
|
|
|
|
concepts = [(word, freq) for word, freq in word_freq.items() |
|
if freq >= min_freq] |
|
concepts.sort(key=lambda x: x[1], reverse=True) |
|
|
|
logger.info(f"Identified {len(concepts)} key concepts after excluding entities") |
|
return concepts[:10] |
|
|
|
except Exception as e: |
|
logger.error(f"Error en identify_key_concepts: {str(e)}") |
|
return [] |
|
|
|
|
|
|
|
def create_concept_graph(doc, key_concepts): |
|
""" |
|
Crea un grafo de relaciones entre conceptos, ignorando entidades. |
|
Args: |
|
doc: Documento procesado por spaCy |
|
key_concepts: Lista de tuplas (concepto, frecuencia) |
|
Returns: |
|
nx.Graph: Grafo de conceptos |
|
""" |
|
try: |
|
G = nx.Graph() |
|
|
|
|
|
concept_words = {concept[0].lower() for concept in key_concepts} |
|
|
|
|
|
entity_tokens = set() |
|
for ent in doc.ents: |
|
entity_tokens.update(token.i for token in ent) |
|
|
|
|
|
for concept, freq in key_concepts: |
|
G.add_node(concept.lower(), weight=freq) |
|
|
|
|
|
for sent in doc.sents: |
|
|
|
current_concepts = [] |
|
for token in sent: |
|
if (token.i not in entity_tokens and |
|
token.lemma_.lower() in concept_words): |
|
current_concepts.append(token.lemma_.lower()) |
|
|
|
|
|
for i, concept1 in enumerate(current_concepts): |
|
for concept2 in current_concepts[i+1:]: |
|
if concept1 != concept2: |
|
if G.has_edge(concept1, concept2): |
|
G[concept1][concept2]['weight'] += 1 |
|
else: |
|
G.add_edge(concept1, concept2, weight=1) |
|
|
|
return G |
|
|
|
except Exception as e: |
|
logger.error(f"Error en create_concept_graph: {str(e)}") |
|
return nx.Graph() |
|
|
|
|
|
|
|
def visualize_concept_graph(G, lang_code): |
|
""" |
|
Visualiza el grafo de conceptos con layout consistente. |
|
Args: |
|
G: networkx.Graph - Grafo de conceptos |
|
lang_code: str - Código del idioma |
|
Returns: |
|
matplotlib.figure.Figure - Figura del grafo |
|
""" |
|
try: |
|
|
|
fig, ax = plt.subplots(figsize=(15, 10)) |
|
|
|
if not G.nodes(): |
|
logger.warning("Grafo vacío, retornando figura vacía") |
|
return fig |
|
|
|
|
|
DG = nx.DiGraph(G) |
|
|
|
|
|
centrality = nx.degree_centrality(G) |
|
|
|
|
|
seed = 42 |
|
|
|
|
|
pos = nx.spring_layout( |
|
DG, |
|
k=2, |
|
iterations=50, |
|
seed=seed |
|
) |
|
|
|
|
|
num_nodes = len(DG.nodes()) |
|
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200 |
|
|
|
|
|
node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()] |
|
edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()] |
|
|
|
|
|
node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()] |
|
|
|
|
|
nodes = nx.draw_networkx_nodes( |
|
DG, |
|
pos, |
|
node_size=node_weights, |
|
node_color=node_colors, |
|
alpha=0.7, |
|
ax=ax |
|
) |
|
|
|
|
|
edges = nx.draw_networkx_edges( |
|
DG, |
|
pos, |
|
width=edge_weights, |
|
alpha=0.6, |
|
edge_color='gray', |
|
arrows=True, |
|
arrowsize=20, |
|
arrowstyle='->', |
|
connectionstyle='arc3,rad=0.2', |
|
ax=ax |
|
) |
|
|
|
|
|
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8 |
|
|
|
|
|
labels = nx.draw_networkx_labels( |
|
DG, |
|
pos, |
|
font_size=font_size, |
|
font_weight='bold', |
|
bbox=dict( |
|
facecolor='white', |
|
edgecolor='none', |
|
alpha=0.7 |
|
), |
|
ax=ax |
|
) |
|
|
|
|
|
sm = plt.cm.ScalarMappable( |
|
cmap=plt.cm.viridis, |
|
norm=plt.Normalize(vmin=0, vmax=1) |
|
) |
|
sm.set_array([]) |
|
plt.colorbar(sm, ax=ax, label='Centralidad del concepto') |
|
|
|
plt.title("Red de conceptos relacionados", pad=20, fontsize=14) |
|
ax.set_axis_off() |
|
|
|
|
|
plt.tight_layout() |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
logger.error(f"Error en visualize_concept_graph: {str(e)}") |
|
return plt.figure() |
|
|
|
|
|
def create_entity_graph(entities): |
|
G = nx.Graph() |
|
for entity_type, entity_list in entities.items(): |
|
for entity in entity_list: |
|
G.add_node(entity, type=entity_type) |
|
for i, entity1 in enumerate(entity_list): |
|
for entity2 in entity_list[i+1:]: |
|
G.add_edge(entity1, entity2) |
|
return G |
|
|
|
|
|
|
|
def visualize_entity_graph(G, lang_code): |
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
pos = nx.spring_layout(G) |
|
for entity_type, color in ENTITY_LABELS[lang_code].items(): |
|
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] |
|
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) |
|
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) |
|
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) |
|
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) |
|
ax.axis('off') |
|
plt.tight_layout() |
|
return fig |
|
|
|
|
|
|
|
def create_topic_graph(topics, doc): |
|
G = nx.Graph() |
|
for topic in topics: |
|
G.add_node(topic, weight=doc.text.count(topic)) |
|
for i, topic1 in enumerate(topics): |
|
for topic2 in topics[i+1:]: |
|
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) |
|
if weight > 0: |
|
G.add_edge(topic1, topic2, weight=weight) |
|
return G |
|
|
|
def visualize_topic_graph(G, lang_code): |
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
pos = nx.spring_layout(G) |
|
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] |
|
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) |
|
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) |
|
edge_weights = [G[u][v]['weight'] for u, v in G.edges()] |
|
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) |
|
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) |
|
ax.axis('off') |
|
plt.tight_layout() |
|
return fig |
|
|
|
|
|
def generate_summary(doc, lang_code): |
|
sentences = list(doc.sents) |
|
summary = sentences[:3] |
|
return " ".join([sent.text for sent in summary]) |
|
|
|
def extract_entities(doc, lang_code): |
|
entities = defaultdict(list) |
|
for ent in doc.ents: |
|
if ent.label_ in ENTITY_LABELS[lang_code]: |
|
entities[ent.label_].append(ent.text) |
|
return dict(entities) |
|
|
|
def analyze_sentiment(doc, lang_code): |
|
positive_words = sum(1 for token in doc if token.sentiment > 0) |
|
negative_words = sum(1 for token in doc if token.sentiment < 0) |
|
total_words = len(doc) |
|
if positive_words > negative_words: |
|
return "Positivo" |
|
elif negative_words > positive_words: |
|
return "Negativo" |
|
else: |
|
return "Neutral" |
|
|
|
def extract_topics(doc, lang_code): |
|
vectorizer = TfidfVectorizer(stop_words='english', max_features=5) |
|
tfidf_matrix = vectorizer.fit_transform([doc.text]) |
|
feature_names = vectorizer.get_feature_names_out() |
|
return list(feature_names) |
|
|
|
|
|
__all__ = [ |
|
'perform_semantic_analysis', |
|
'identify_key_concepts', |
|
'create_concept_graph', |
|
'visualize_concept_graph', |
|
'fig_to_bytes', |
|
'ENTITY_LABELS', |
|
'POS_COLORS', |
|
'POS_TRANSLATIONS' |
|
] |