File size: 17,560 Bytes
5971e1f d6c6c2c 5971e1f 6fb893b f520599 2cb0f39 f520599 d6c6c2c a836aef 9a10308 a836aef 5971e1f d6c6c2c 5971e1f f520599 5971e1f a9dba4e 5971e1f f520599 a9dba4e d6c6c2c a9dba4e d6c6c2c f520599 5971e1f d6c6c2c f520599 d6c6c2c 5971e1f d6c6c2c f520599 a9dba4e 5971e1f d6c6c2c 5971e1f d6c6c2c f520599 5971e1f d6c6c2c a9dba4e f520599 5971e1f d6c6c2c a9dba4e 5971e1f 9fbca90 5971e1f 9fbca90 5971e1f 9fbca90 5971e1f 9fbca90 5971e1f 9fbca90 5971e1f 9fbca90 a9dba4e 5971e1f a9dba4e 5971e1f d6c6c2c 9fbca90 5971e1f 9fbca90 5971e1f 9fbca90 5971e1f 9fbca90 5971e1f 9fbca90 5971e1f d6c6c2c b756e2b 5971e1f b756e2b a62673f 5971e1f a5b06f2 5971e1f d6c6c2c a62673f b756e2b 5971e1f 29a1624 a62673f 29a1624 a62673f 5971e1f a62673f b756e2b 5971e1f a62673f b756e2b 5971e1f 29a1624 a62673f b756e2b a62673f a5b06f2 5971e1f a62673f a5b06f2 5971e1f d6c6c2c 5971e1f d6c6c2c 5971e1f d6c6c2c 5971e1f d6c6c2c 5971e1f f520599 5971e1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# modules/text_analysis/semantic_analysis.py
# 1. Importaciones estándar del sistema
import logging
import io
import base64
from collections import Counter, defaultdict
# 2. Importaciones de terceros
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Solo configurar si no hay handlers ya configurados
logger = logging.getLogger(__name__)
# 4. Importaciones locales
from .stopwords import (
process_text,
clean_text,
get_custom_stopwords,
get_stopwords_for_spacy
)
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
'VERB': 'Verbo', 'X': 'Otro',
},
'en': {
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
'VERB': 'Verb', 'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
'VERB': 'Verbe', 'X': 'Autre',
}
}
ENTITY_LABELS = {
'es': {
"Personas": "lightblue",
"Lugares": "lightcoral",
"Inventos": "lightgreen",
"Fechas": "lightyellow",
"Conceptos": "lightpink"
},
'en': {
"People": "lightblue",
"Places": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
},
'fr': {
"Personnes": "lightblue",
"Lieux": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
}
}
def fig_to_bytes(fig):
"""Convierte una figura de matplotlib a bytes."""
try:
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
buf.seek(0)
return buf.getvalue()
except Exception as e:
logger.error(f"Error en fig_to_bytes: {str(e)}")
return None
###########################################################
def perform_semantic_analysis(text, nlp, lang_code):
"""
Realiza el análisis semántico completo del texto.
"""
if not text or not nlp or not lang_code:
logger.error("Parámetros inválidos para el análisis semántico")
return {
'success': False,
'error': 'Parámetros inválidos'
}
try:
logger.info(f"Starting semantic analysis for language: {lang_code}")
# Procesar texto y remover stopwords
doc = nlp(text)
if not doc:
logger.error("Error al procesar el texto con spaCy")
return {
'success': False,
'error': 'Error al procesar el texto'
}
# Identificar conceptos clave
logger.info("Identificando conceptos clave...")
stopwords = get_custom_stopwords(lang_code)
key_concepts = identify_key_concepts(doc, stopwords=stopwords)
if not key_concepts:
logger.warning("No se identificaron conceptos clave")
return {
'success': False,
'error': 'No se pudieron identificar conceptos clave'
}
# Crear grafo de conceptos
logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...")
concept_graph = create_concept_graph(doc, key_concepts)
if not concept_graph.nodes():
logger.warning("Se creó un grafo vacío")
return {
'success': False,
'error': 'No se pudo crear el grafo de conceptos'
}
# Visualizar grafo
logger.info("Visualizando grafo...")
plt.clf() # Limpiar figura actual
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
# Convertir a bytes
logger.info("Convirtiendo grafo a bytes...")
graph_bytes = fig_to_bytes(concept_graph_fig)
if not graph_bytes:
logger.error("Error al convertir grafo a bytes")
return {
'success': False,
'error': 'Error al generar visualización'
}
# Limpiar recursos
plt.close(concept_graph_fig)
plt.close('all')
result = {
'success': True,
'key_concepts': key_concepts,
'concept_graph': graph_bytes
}
logger.info("Análisis semántico completado exitosamente")
return result
except Exception as e:
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
plt.close('all') # Asegurarse de limpiar recursos
return {
'success': False,
'error': str(e)
}
finally:
plt.close('all') # Asegurar limpieza incluso si hay error
############################################################
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
"""
Identifica conceptos clave en el texto, excluyendo entidades nombradas.
Args:
doc: Documento procesado por spaCy
stopwords: Lista de stopwords
min_freq: Frecuencia mínima para considerar un concepto
min_length: Longitud mínima del concepto
Returns:
List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia)
"""
try:
word_freq = Counter()
# Crear conjunto de tokens que son parte de entidades
entity_tokens = set()
for ent in doc.ents:
entity_tokens.update(token.i for token in ent)
# Procesar tokens
for token in doc:
# Verificar si el token no es parte de una entidad nombrada
if (token.i not in entity_tokens and # No es parte de una entidad
token.lemma_.lower() not in stopwords and # No es stopword
len(token.lemma_) >= min_length and # Longitud mínima
token.is_alpha and # Es alfabético
not token.is_punct and # No es puntuación
not token.like_num and # No es número
not token.is_space and # No es espacio
not token.is_stop and # No es stopword de spaCy
not token.pos_ == 'PROPN' and # No es nombre propio
not token.pos_ == 'SYM' and # No es símbolo
not token.pos_ == 'NUM' and # No es número
not token.pos_ == 'X'): # No es otro
# Convertir a minúsculas y añadir al contador
word_freq[token.lemma_.lower()] += 1
# Filtrar conceptos por frecuencia mínima y ordenar por frecuencia
concepts = [(word, freq) for word, freq in word_freq.items()
if freq >= min_freq]
concepts.sort(key=lambda x: x[1], reverse=True)
logger.info(f"Identified {len(concepts)} key concepts after excluding entities")
return concepts[:10]
except Exception as e:
logger.error(f"Error en identify_key_concepts: {str(e)}")
return []
########################################################################
def create_concept_graph(doc, key_concepts):
"""
Crea un grafo de relaciones entre conceptos, ignorando entidades.
Args:
doc: Documento procesado por spaCy
key_concepts: Lista de tuplas (concepto, frecuencia)
Returns:
nx.Graph: Grafo de conceptos
"""
try:
G = nx.Graph()
# Crear un conjunto de conceptos clave para búsqueda rápida
concept_words = {concept[0].lower() for concept in key_concepts}
# Crear conjunto de tokens que son parte de entidades
entity_tokens = set()
for ent in doc.ents:
entity_tokens.update(token.i for token in ent)
# Añadir nodos al grafo
for concept, freq in key_concepts:
G.add_node(concept.lower(), weight=freq)
# Analizar cada oración
for sent in doc.sents:
# Obtener conceptos en la oración actual, excluyendo entidades
current_concepts = []
for token in sent:
if (token.i not in entity_tokens and
token.lemma_.lower() in concept_words):
current_concepts.append(token.lemma_.lower())
# Crear conexiones entre conceptos en la misma oración
for i, concept1 in enumerate(current_concepts):
for concept2 in current_concepts[i+1:]:
if concept1 != concept2:
if G.has_edge(concept1, concept2):
G[concept1][concept2]['weight'] += 1
else:
G.add_edge(concept1, concept2, weight=1)
return G
except Exception as e:
logger.error(f"Error en create_concept_graph: {str(e)}")
return nx.Graph()
###############################################################################
def visualize_concept_graph(G, lang_code):
"""
Visualiza el grafo de conceptos con layout consistente.
Args:
G: networkx.Graph - Grafo de conceptos
lang_code: str - Código del idioma
Returns:
matplotlib.figure.Figure - Figura del grafo
"""
try:
# Crear nueva figura con mayor tamaño y definir los ejes explícitamente
fig, ax = plt.subplots(figsize=(15, 10))
if not G.nodes():
logger.warning("Grafo vacío, retornando figura vacía")
return fig
# Convertir grafo no dirigido a dirigido para mostrar flechas
DG = nx.DiGraph(G)
# Calcular centralidad de los nodos para el color
centrality = nx.degree_centrality(G)
# Establecer semilla para reproducibilidad
seed = 42
# Calcular layout con parámetros fijos
pos = nx.spring_layout(
DG,
k=2, # Distancia ideal entre nodos
iterations=50, # Número de iteraciones
seed=seed # Semilla fija para reproducibilidad
)
# Calcular factor de escala basado en número de nodos
num_nodes = len(DG.nodes())
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200
# Obtener pesos ajustados
node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()]
edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()]
# Crear mapa de colores basado en centralidad
node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()]
# Dibujar nodos
nodes = nx.draw_networkx_nodes(
DG,
pos,
node_size=node_weights,
node_color=node_colors,
alpha=0.7,
ax=ax
)
# Dibujar aristas con flechas
edges = nx.draw_networkx_edges(
DG,
pos,
width=edge_weights,
alpha=0.6,
edge_color='gray',
arrows=True,
arrowsize=20,
arrowstyle='->',
connectionstyle='arc3,rad=0.2',
ax=ax
)
# Ajustar tamaño de fuente según número de nodos
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
# Dibujar etiquetas con fondo blanco para mejor legibilidad
labels = nx.draw_networkx_labels(
DG,
pos,
font_size=font_size,
font_weight='bold',
bbox=dict(
facecolor='white',
edgecolor='none',
alpha=0.7
),
ax=ax
)
# Añadir leyenda de centralidad
sm = plt.cm.ScalarMappable(
cmap=plt.cm.viridis,
norm=plt.Normalize(vmin=0, vmax=1)
)
sm.set_array([])
plt.colorbar(sm, ax=ax, label='Centralidad del concepto')
plt.title("Red de conceptos relacionados", pad=20, fontsize=14)
ax.set_axis_off()
# Ajustar el layout para que la barra de color no se superponga
plt.tight_layout()
return fig
except Exception as e:
logger.error(f"Error en visualize_concept_graph: {str(e)}")
return plt.figure() # Retornar figura vacía en caso de error
########################################################################
def create_entity_graph(entities):
G = nx.Graph()
for entity_type, entity_list in entities.items():
for entity in entity_list:
G.add_node(entity, type=entity_type)
for i, entity1 in enumerate(entity_list):
for entity2 in entity_list[i+1:]:
G.add_edge(entity1, entity2)
return G
#############################################################
def visualize_entity_graph(G, lang_code):
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
for entity_type, color in ENTITY_LABELS[lang_code].items():
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
ax.axis('off')
plt.tight_layout()
return fig
#################################################################################
def create_topic_graph(topics, doc):
G = nx.Graph()
for topic in topics:
G.add_node(topic, weight=doc.text.count(topic))
for i, topic1 in enumerate(topics):
for topic2 in topics[i+1:]:
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
if weight > 0:
G.add_edge(topic1, topic2, weight=weight)
return G
def visualize_topic_graph(G, lang_code):
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
ax.axis('off')
plt.tight_layout()
return fig
###########################################################################################
def generate_summary(doc, lang_code):
sentences = list(doc.sents)
summary = sentences[:3] # Toma las primeras 3 oraciones como resumen
return " ".join([sent.text for sent in summary])
def extract_entities(doc, lang_code):
entities = defaultdict(list)
for ent in doc.ents:
if ent.label_ in ENTITY_LABELS[lang_code]:
entities[ent.label_].append(ent.text)
return dict(entities)
def analyze_sentiment(doc, lang_code):
positive_words = sum(1 for token in doc if token.sentiment > 0)
negative_words = sum(1 for token in doc if token.sentiment < 0)
total_words = len(doc)
if positive_words > negative_words:
return "Positivo"
elif negative_words > positive_words:
return "Negativo"
else:
return "Neutral"
def extract_topics(doc, lang_code):
vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
tfidf_matrix = vectorizer.fit_transform([doc.text])
feature_names = vectorizer.get_feature_names_out()
return list(feature_names)
# Asegúrate de que todas las funciones necesarias estén exportadas
__all__ = [
'perform_semantic_analysis',
'identify_key_concepts',
'create_concept_graph',
'visualize_concept_graph',
'fig_to_bytes', # Faltaba esta coma
'ENTITY_LABELS',
'POS_COLORS',
'POS_TRANSLATIONS'
] |