File size: 17,560 Bytes
5971e1f
 
d6c6c2c
 
 
 
 
 
 
5971e1f
 
 
 
 
 
6fb893b
f520599
2cb0f39
f520599
d6c6c2c
a836aef
 
9a10308
a836aef
 
 
5971e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6c6c2c
 
 
 
 
 
 
 
 
 
 
 
5971e1f
 
 
 
f520599
 
 
 
 
 
 
5971e1f
a9dba4e
 
 
5971e1f
f520599
 
 
 
 
 
a9dba4e
 
d6c6c2c
 
 
a9dba4e
d6c6c2c
 
 
 
 
 
 
 
f520599
5971e1f
d6c6c2c
f520599
 
 
 
 
 
 
d6c6c2c
 
 
5971e1f
d6c6c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f520599
a9dba4e
5971e1f
d6c6c2c
5971e1f
d6c6c2c
f520599
 
 
5971e1f
 
d6c6c2c
a9dba4e
 
 
 
f520599
 
5971e1f
d6c6c2c
 
a9dba4e
5971e1f
9fbca90
 
 
 
 
 
 
 
5971e1f
 
 
 
9fbca90
 
 
 
 
 
5971e1f
9fbca90
 
 
 
 
 
 
 
 
 
 
 
 
5971e1f
9fbca90
5971e1f
 
9fbca90
5971e1f
 
 
 
9fbca90
a9dba4e
5971e1f
 
 
a9dba4e
5971e1f
d6c6c2c
9fbca90
5971e1f
 
9fbca90
5971e1f
 
 
 
 
 
 
 
 
 
 
 
9fbca90
 
 
 
 
5971e1f
 
 
 
 
 
9fbca90
5971e1f
 
9fbca90
 
5971e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6c6c2c
b756e2b
5971e1f
 
b756e2b
a62673f
 
 
 
 
5971e1f
 
a5b06f2
 
5971e1f
d6c6c2c
 
 
 
a62673f
 
 
 
 
 
b756e2b
 
 
 
 
 
 
 
 
 
5971e1f
29a1624
a62673f
29a1624
 
 
a62673f
 
 
 
 
5971e1f
a62673f
b756e2b
 
 
 
 
 
 
 
5971e1f
a62673f
b756e2b
 
 
 
 
 
 
 
 
 
 
 
5971e1f
29a1624
 
 
a62673f
b756e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62673f
a5b06f2
5971e1f
a62673f
a5b06f2
 
 
 
5971e1f
d6c6c2c
5971e1f
 
 
d6c6c2c
5971e1f
d6c6c2c
5971e1f
 
 
 
 
 
 
 
 
 
d6c6c2c
 
5971e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f520599
5971e1f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# modules/text_analysis/semantic_analysis.py

# 1. Importaciones estándar del sistema
import logging
import io
import base64
from collections import Counter, defaultdict

# 2. Importaciones de terceros
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Solo configurar si no hay handlers ya configurados
logger = logging.getLogger(__name__)
    
# 4. Importaciones locales
from .stopwords import (
    process_text,
    clean_text,
    get_custom_stopwords,
    get_stopwords_for_spacy
)


# Define colors for grammatical categories
POS_COLORS = {
    'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
    'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
    'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
    'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}

POS_TRANSLATIONS = {
    'es': {
        'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
        'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
        'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
        'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
        'VERB': 'Verbo', 'X': 'Otro',
    },
    'en': {
        'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
        'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
        'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
        'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
        'VERB': 'Verb', 'X': 'Other',
    },
    'fr': {
        'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
        'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
        'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
        'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
        'VERB': 'Verbe', 'X': 'Autre',
    }
}

ENTITY_LABELS = {
    'es': {
        "Personas": "lightblue",
        "Lugares": "lightcoral",
        "Inventos": "lightgreen",
        "Fechas": "lightyellow",
        "Conceptos": "lightpink"
    },
    'en': {
        "People": "lightblue",
        "Places": "lightcoral",
        "Inventions": "lightgreen",
        "Dates": "lightyellow",
        "Concepts": "lightpink"
    },
    'fr': {
        "Personnes": "lightblue",
        "Lieux": "lightcoral",
        "Inventions": "lightgreen",
        "Dates": "lightyellow",
        "Concepts": "lightpink"
    }
}

def fig_to_bytes(fig):
    """Convierte una figura de matplotlib a bytes."""
    try:
        buf = io.BytesIO()
        fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
        buf.seek(0)
        return buf.getvalue()
    except Exception as e:
        logger.error(f"Error en fig_to_bytes: {str(e)}")
        return None
        
###########################################################
def perform_semantic_analysis(text, nlp, lang_code):
    """
    Realiza el análisis semántico completo del texto.
    """
    if not text or not nlp or not lang_code:
        logger.error("Parámetros inválidos para el análisis semántico")
        return {
            'success': False,
            'error': 'Parámetros inválidos'
        }
        
    try:
        logger.info(f"Starting semantic analysis for language: {lang_code}")
        
        # Procesar texto y remover stopwords
        doc = nlp(text)
        if not doc:
            logger.error("Error al procesar el texto con spaCy")
            return {
                'success': False,
                'error': 'Error al procesar el texto'
            }
        
        # Identificar conceptos clave
        logger.info("Identificando conceptos clave...")
        stopwords = get_custom_stopwords(lang_code)
        key_concepts = identify_key_concepts(doc, stopwords=stopwords)
        
        if not key_concepts:
            logger.warning("No se identificaron conceptos clave")
            return {
                'success': False,
                'error': 'No se pudieron identificar conceptos clave'
            }
        
        # Crear grafo de conceptos
        logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...")
        concept_graph = create_concept_graph(doc, key_concepts)
        
        if not concept_graph.nodes():
            logger.warning("Se creó un grafo vacío")
            return {
                'success': False,
                'error': 'No se pudo crear el grafo de conceptos'
            }
        
        # Visualizar grafo
        logger.info("Visualizando grafo...")
        plt.clf()  # Limpiar figura actual
        concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
        
        # Convertir a bytes
        logger.info("Convirtiendo grafo a bytes...")
        graph_bytes = fig_to_bytes(concept_graph_fig)
        
        if not graph_bytes:
            logger.error("Error al convertir grafo a bytes")
            return {
                'success': False,
                'error': 'Error al generar visualización'
            }
        
        # Limpiar recursos
        plt.close(concept_graph_fig)
        plt.close('all')
        
        result = {
            'success': True,
            'key_concepts': key_concepts,
            'concept_graph': graph_bytes
        }
        
        logger.info("Análisis semántico completado exitosamente")
        return result
        
    except Exception as e:
        logger.error(f"Error in perform_semantic_analysis: {str(e)}")
        plt.close('all')  # Asegurarse de limpiar recursos
        return {
            'success': False,
            'error': str(e)
        }
    finally:
        plt.close('all')  # Asegurar limpieza incluso si hay error

############################################################ 

def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
    """
    Identifica conceptos clave en el texto, excluyendo entidades nombradas.
    Args:
        doc: Documento procesado por spaCy
        stopwords: Lista de stopwords
        min_freq: Frecuencia mínima para considerar un concepto
        min_length: Longitud mínima del concepto
    Returns:
        List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia)
    """
    try:
        word_freq = Counter()
        
        # Crear conjunto de tokens que son parte de entidades
        entity_tokens = set()
        for ent in doc.ents:
            entity_tokens.update(token.i for token in ent)
        
        # Procesar tokens
        for token in doc:
            # Verificar si el token no es parte de una entidad nombrada
            if (token.i not in entity_tokens and  # No es parte de una entidad
                token.lemma_.lower() not in stopwords and  # No es stopword
                len(token.lemma_) >= min_length and  # Longitud mínima
                token.is_alpha and  # Es alfabético
                not token.is_punct and  # No es puntuación
                not token.like_num and  # No es número
                not token.is_space and  # No es espacio
                not token.is_stop and  # No es stopword de spaCy
                not token.pos_ == 'PROPN' and  # No es nombre propio
                not token.pos_ == 'SYM' and  # No es símbolo
                not token.pos_ == 'NUM' and  # No es número
                not token.pos_ == 'X'):  # No es otro
                
                # Convertir a minúsculas y añadir al contador
                word_freq[token.lemma_.lower()] += 1
        
        # Filtrar conceptos por frecuencia mínima y ordenar por frecuencia
        concepts = [(word, freq) for word, freq in word_freq.items() 
                   if freq >= min_freq]
        concepts.sort(key=lambda x: x[1], reverse=True)
        
        logger.info(f"Identified {len(concepts)} key concepts after excluding entities")
        return concepts[:10]
        
    except Exception as e:
        logger.error(f"Error en identify_key_concepts: {str(e)}")
        return []

########################################################################

def create_concept_graph(doc, key_concepts):
    """
    Crea un grafo de relaciones entre conceptos, ignorando entidades.
    Args:
        doc: Documento procesado por spaCy
        key_concepts: Lista de tuplas (concepto, frecuencia)
    Returns:
        nx.Graph: Grafo de conceptos
    """
    try:
        G = nx.Graph()
        
        # Crear un conjunto de conceptos clave para búsqueda rápida
        concept_words = {concept[0].lower() for concept in key_concepts}
        
        # Crear conjunto de tokens que son parte de entidades
        entity_tokens = set()
        for ent in doc.ents:
            entity_tokens.update(token.i for token in ent)
        
        # Añadir nodos al grafo
        for concept, freq in key_concepts:
            G.add_node(concept.lower(), weight=freq)
        
        # Analizar cada oración
        for sent in doc.sents:
            # Obtener conceptos en la oración actual, excluyendo entidades
            current_concepts = []
            for token in sent:
                if (token.i not in entity_tokens and 
                    token.lemma_.lower() in concept_words):
                    current_concepts.append(token.lemma_.lower())
            
            # Crear conexiones entre conceptos en la misma oración
            for i, concept1 in enumerate(current_concepts):
                for concept2 in current_concepts[i+1:]:
                    if concept1 != concept2:
                        if G.has_edge(concept1, concept2):
                            G[concept1][concept2]['weight'] += 1
                        else:
                            G.add_edge(concept1, concept2, weight=1)
        
        return G
        
    except Exception as e:
        logger.error(f"Error en create_concept_graph: {str(e)}")
        return nx.Graph()

###############################################################################

def visualize_concept_graph(G, lang_code):
    """
    Visualiza el grafo de conceptos con layout consistente.
    Args:
        G: networkx.Graph - Grafo de conceptos
        lang_code: str - Código del idioma
    Returns:
        matplotlib.figure.Figure - Figura del grafo
    """
    try:
        # Crear nueva figura con mayor tamaño y definir los ejes explícitamente
        fig, ax = plt.subplots(figsize=(15, 10))
        
        if not G.nodes():
            logger.warning("Grafo vacío, retornando figura vacía")
            return fig
            
        # Convertir grafo no dirigido a dirigido para mostrar flechas
        DG = nx.DiGraph(G)
        
        # Calcular centralidad de los nodos para el color
        centrality = nx.degree_centrality(G)
        
        # Establecer semilla para reproducibilidad
        seed = 42
        
        # Calcular layout con parámetros fijos
        pos = nx.spring_layout(
            DG,
            k=2,          # Distancia ideal entre nodos
            iterations=50, # Número de iteraciones
            seed=seed     # Semilla fija para reproducibilidad
        )
        
        # Calcular factor de escala basado en número de nodos
        num_nodes = len(DG.nodes())
        scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200
        
        # Obtener pesos ajustados
        node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()]
        edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()]
        
        # Crear mapa de colores basado en centralidad
        node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()]
        
        # Dibujar nodos
        nodes = nx.draw_networkx_nodes(
            DG, 
            pos, 
            node_size=node_weights,
            node_color=node_colors,
            alpha=0.7,
            ax=ax
        )
        
        # Dibujar aristas con flechas
        edges = nx.draw_networkx_edges(
            DG, 
            pos,
            width=edge_weights,
            alpha=0.6,
            edge_color='gray',
            arrows=True,
            arrowsize=20,
            arrowstyle='->',
            connectionstyle='arc3,rad=0.2',
            ax=ax
        )
        
        # Ajustar tamaño de fuente según número de nodos
        font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
        
        # Dibujar etiquetas con fondo blanco para mejor legibilidad
        labels = nx.draw_networkx_labels(
            DG, 
            pos,
            font_size=font_size,
            font_weight='bold',
            bbox=dict(
                facecolor='white', 
                edgecolor='none', 
                alpha=0.7
            ),
            ax=ax
        )
        
        # Añadir leyenda de centralidad
        sm = plt.cm.ScalarMappable(
            cmap=plt.cm.viridis, 
            norm=plt.Normalize(vmin=0, vmax=1)
        )
        sm.set_array([])
        plt.colorbar(sm, ax=ax, label='Centralidad del concepto')
        
        plt.title("Red de conceptos relacionados", pad=20, fontsize=14)
        ax.set_axis_off()
        
        # Ajustar el layout para que la barra de color no se superponga
        plt.tight_layout()
        
        return fig
        
    except Exception as e:
        logger.error(f"Error en visualize_concept_graph: {str(e)}")
        return plt.figure()  # Retornar figura vacía en caso de error

########################################################################
def create_entity_graph(entities):
    G = nx.Graph()
    for entity_type, entity_list in entities.items():
        for entity in entity_list:
            G.add_node(entity, type=entity_type)
        for i, entity1 in enumerate(entity_list):
            for entity2 in entity_list[i+1:]:
                G.add_edge(entity1, entity2)
    return G


#############################################################
def visualize_entity_graph(G, lang_code):
    fig, ax = plt.subplots(figsize=(12, 8))
    pos = nx.spring_layout(G)
    for entity_type, color in ENTITY_LABELS[lang_code].items():
        node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
        nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
    nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
    ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
    ax.axis('off')
    plt.tight_layout()
    return fig


#################################################################################
def create_topic_graph(topics, doc):
    G = nx.Graph()
    for topic in topics:
        G.add_node(topic, weight=doc.text.count(topic))
    for i, topic1 in enumerate(topics):
        for topic2 in topics[i+1:]:
            weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
            if weight > 0:
                G.add_edge(topic1, topic2, weight=weight)
    return G

def visualize_topic_graph(G, lang_code):
    fig, ax = plt.subplots(figsize=(12, 8))
    pos = nx.spring_layout(G)
    node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
    nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
    edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
    nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
    ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
    ax.axis('off')
    plt.tight_layout()
    return fig

###########################################################################################
def generate_summary(doc, lang_code):
    sentences = list(doc.sents)
    summary = sentences[:3]  # Toma las primeras 3 oraciones como resumen
    return " ".join([sent.text for sent in summary])

def extract_entities(doc, lang_code):
    entities = defaultdict(list)
    for ent in doc.ents:
        if ent.label_ in ENTITY_LABELS[lang_code]:
            entities[ent.label_].append(ent.text)
    return dict(entities)

def analyze_sentiment(doc, lang_code):
    positive_words = sum(1 for token in doc if token.sentiment > 0)
    negative_words = sum(1 for token in doc if token.sentiment < 0)
    total_words = len(doc)
    if positive_words > negative_words:
        return "Positivo"
    elif negative_words > positive_words:
        return "Negativo"
    else:
        return "Neutral"

def extract_topics(doc, lang_code):
    vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
    tfidf_matrix = vectorizer.fit_transform([doc.text])
    feature_names = vectorizer.get_feature_names_out()
    return list(feature_names)

# Asegúrate de que todas las funciones necesarias estén exportadas
__all__ = [
    'perform_semantic_analysis',
    'identify_key_concepts',
    'create_concept_graph',
    'visualize_concept_graph',
    'fig_to_bytes',  # Faltaba esta coma
    'ENTITY_LABELS',
    'POS_COLORS',
    'POS_TRANSLATIONS'
]