|
|
|
import streamlit as st
|
|
import spacy
|
|
import networkx as nx
|
|
import matplotlib.pyplot as plt
|
|
from collections import Counter, defaultdict
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
POS_COLORS = {
|
|
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
|
|
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
|
|
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
|
|
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
|
|
}
|
|
|
|
POS_TRANSLATIONS = {
|
|
'es': {
|
|
'ADJ': 'Adjetivo', 'ADP': 'Preposici贸n', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
|
|
'CCONJ': 'Conjunci贸n Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjecci贸n',
|
|
'NOUN': 'Sustantivo', 'NUM': 'N煤mero', 'PART': 'Part铆cula', 'PRON': 'Pronombre',
|
|
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunci贸n Subordinante', 'SYM': 'S铆mbolo',
|
|
'VERB': 'Verbo', 'X': 'Otro',
|
|
},
|
|
'en': {
|
|
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
|
|
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
|
|
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
|
|
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
|
|
'VERB': 'Verb', 'X': 'Other',
|
|
},
|
|
'fr': {
|
|
'ADJ': 'Adjectif', 'ADP': 'Pr茅position', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
|
|
'CCONJ': 'Conjonction de Coordination', 'DET': 'D茅terminant', 'INTJ': 'Interjection',
|
|
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
|
|
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
|
|
'VERB': 'Verbe', 'X': 'Autre',
|
|
}
|
|
}
|
|
|
|
ENTITY_LABELS = {
|
|
'es': {
|
|
"Personas": "lightblue",
|
|
"Lugares": "lightcoral",
|
|
"Inventos": "lightgreen",
|
|
"Fechas": "lightyellow",
|
|
"Conceptos": "lightpink"
|
|
},
|
|
'en': {
|
|
"People": "lightblue",
|
|
"Places": "lightcoral",
|
|
"Inventions": "lightgreen",
|
|
"Dates": "lightyellow",
|
|
"Concepts": "lightpink"
|
|
},
|
|
'fr': {
|
|
"Personnes": "lightblue",
|
|
"Lieux": "lightcoral",
|
|
"Inventions": "lightgreen",
|
|
"Dates": "lightyellow",
|
|
"Concepts": "lightpink"
|
|
}
|
|
}
|
|
|
|
def identify_and_contextualize_entities(doc, lang):
|
|
entities = []
|
|
for ent in doc.ents:
|
|
|
|
start = max(0, ent.start - 3)
|
|
end = min(len(doc), ent.end + 3)
|
|
context = doc[start:end].text
|
|
|
|
|
|
if ent.label_ in ['PERSON', 'ORG']:
|
|
category = "Personas" if lang == 'es' else "People" if lang == 'en' else "Personnes"
|
|
elif ent.label_ in ['LOC', 'GPE']:
|
|
category = "Lugares" if lang == 'es' else "Places" if lang == 'en' else "Lieux"
|
|
elif ent.label_ in ['PRODUCT']:
|
|
category = "Inventos" if lang == 'es' else "Inventions" if lang == 'en' else "Inventions"
|
|
elif ent.label_ in ['DATE', 'TIME']:
|
|
category = "Fechas" if lang == 'es' else "Dates" if lang == 'en' else "Dates"
|
|
else:
|
|
category = "Conceptos" if lang == 'es' else "Concepts" if lang == 'en' else "Concepts"
|
|
|
|
entities.append({
|
|
'text': ent.text,
|
|
'label': category,
|
|
'start': ent.start,
|
|
'end': ent.end,
|
|
'context': context
|
|
})
|
|
|
|
|
|
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
|
|
key_concepts = word_freq.most_common(10)
|
|
|
|
return entities, key_concepts
|
|
|
|
def create_concept_graph(text, concepts):
|
|
vectorizer = TfidfVectorizer()
|
|
tfidf_matrix = vectorizer.fit_transform([text])
|
|
concept_vectors = vectorizer.transform(concepts)
|
|
similarity_matrix = cosine_similarity(concept_vectors, concept_vectors)
|
|
|
|
G = nx.Graph()
|
|
for i, concept in enumerate(concepts):
|
|
G.add_node(concept)
|
|
for j in range(i+1, len(concepts)):
|
|
if similarity_matrix[i][j] > 0.1:
|
|
G.add_edge(concept, concepts[j], weight=similarity_matrix[i][j])
|
|
|
|
return G
|
|
|
|
def visualize_concept_graph(G, lang):
|
|
fig, ax = plt.subplots(figsize=(12, 8))
|
|
pos = nx.spring_layout(G)
|
|
|
|
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color='lightblue', ax=ax)
|
|
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
|
|
nx.draw_networkx_edges(G, pos, width=1, ax=ax)
|
|
|
|
edge_labels = nx.get_edge_attributes(G, 'weight')
|
|
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, ax=ax)
|
|
|
|
title = {
|
|
'es': "Relaciones Conceptuales",
|
|
'en': "Conceptual Relations",
|
|
'fr': "Relations Conceptuelles"
|
|
}
|
|
ax.set_title(title[lang], fontsize=16)
|
|
ax.axis('off')
|
|
|
|
return fig
|
|
|
|
def perform_semantic_analysis(text, nlp, lang):
|
|
doc = nlp(text)
|
|
|
|
|
|
entities, key_concepts = identify_and_contextualize_entities(doc, lang)
|
|
|
|
|
|
concepts = [concept for concept, _ in key_concepts]
|
|
concept_graph = create_concept_graph(text, concepts)
|
|
relations_graph = visualize_concept_graph(concept_graph, lang)
|
|
|
|
return {
|
|
'entities': entities,
|
|
'key_concepts': key_concepts,
|
|
'relations_graph': relations_graph
|
|
}
|
|
|
|
__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS'] |