|
|
|
import streamlit as st |
|
from streamlit_float import * |
|
from streamlit_antd_components import * |
|
from streamlit.components.v1 import html |
|
import spacy_streamlit |
|
import io |
|
from io import BytesIO |
|
import base64 |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
import re |
|
import logging |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
from .semantic_process import ( |
|
process_semantic_input, |
|
format_semantic_results |
|
) |
|
|
|
from ..utils.widget_utils import generate_unique_key |
|
from ..database.semantic_mongo_db import store_student_semantic_result |
|
from ..database.semantic_export import export_user_interactions |
|
|
|
def display_semantic_interface(lang_code, nlp_models, semantic_t): |
|
""" |
|
Interfaz para el análisis semántico con controles alineados horizontalmente |
|
""" |
|
|
|
st.session_state.page = 'semantic' |
|
|
|
|
|
if 'semantic_content' not in st.session_state: |
|
st.session_state.semantic_content = None |
|
if 'semantic_analyzed' not in st.session_state: |
|
st.session_state.semantic_analyzed = False |
|
|
|
|
|
with st.container(): |
|
|
|
cols = st.columns([4, 2, 2, 2]) |
|
|
|
|
|
with cols[0]: |
|
uploaded_file = st.file_uploader( |
|
"Upload text file", |
|
type=['txt'], |
|
key="semantic_file_upload" |
|
) |
|
|
|
|
|
with cols[1]: |
|
can_analyze = uploaded_file is not None and not st.session_state.semantic_analyzed |
|
if st.button('Analyze', |
|
disabled=not can_analyze, |
|
key="semantic_analyze"): |
|
if uploaded_file: |
|
text_content = uploaded_file.getvalue().decode('utf-8') |
|
|
|
with st.spinner("Analyzing..."): |
|
analysis_result = process_semantic_input( |
|
text_content, |
|
lang_code, |
|
nlp_models, |
|
semantic_t |
|
) |
|
if analysis_result['success']: |
|
st.session_state.semantic_result = analysis_result |
|
st.session_state.semantic_analyzed = True |
|
st.success("Analysis completed!") |
|
|
|
|
|
display_semantic_results( |
|
analysis_result, |
|
lang_code, |
|
semantic_t |
|
) |
|
|
|
|
|
with cols[2]: |
|
if st.button('Export', |
|
disabled=not st.session_state.semantic_analyzed, |
|
key="semantic_export"): |
|
if st.session_state.semantic_analyzed: |
|
try: |
|
pdf_buffer = export_user_interactions( |
|
st.session_state.username, |
|
'semantic' |
|
) |
|
st.download_button( |
|
"Download PDF", |
|
data=pdf_buffer, |
|
file_name="semantic_analysis.pdf", |
|
mime="application/pdf" |
|
) |
|
except Exception as e: |
|
st.error(f"Error exporting: {str(e)}") |
|
|
|
|
|
with cols[3]: |
|
if st.button('New Analysis', |
|
disabled=not st.session_state.semantic_analyzed, |
|
key="semantic_new"): |
|
st.session_state.semantic_content = None |
|
st.session_state.semantic_analyzed = False |
|
st.session_state.semantic_result = None |
|
st.rerun() |
|
|
|
|
|
if st.session_state.semantic_analyzed and 'semantic_result' in st.session_state: |
|
display_semantic_results( |
|
st.session_state.semantic_result, |
|
lang_code, |
|
semantic_t |
|
) |
|
elif not uploaded_file: |
|
st.info("Please upload a text file to begin analysis") |
|
|
|
def display_semantic_results(result, lang_code, semantic_t): |
|
""" |
|
Muestra los resultados del análisis semántico |
|
""" |
|
if result is None or not result['success']: |
|
st.warning(semantic_t.get('no_results', 'No results available')) |
|
return |
|
|
|
analysis = result['analysis'] |
|
|
|
|
|
tab1, tab2 = st.tabs([ |
|
semantic_t.get('concepts_tab', 'Key Concepts Analysis'), |
|
semantic_t.get('entities_tab', 'Entities Analysis') |
|
]) |
|
|
|
|
|
with tab1: |
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) |
|
concept_text = "\n".join([ |
|
f"• {concept} ({frequency:.2f})" |
|
for concept, frequency in analysis['key_concepts'] |
|
]) |
|
st.markdown(concept_text) |
|
|
|
|
|
with col2: |
|
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) |
|
st.image(analysis['concept_graph']) |
|
|
|
|
|
with tab2: |
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) |
|
if 'entities' in analysis: |
|
for entity_type, entities in analysis['entities'].items(): |
|
st.markdown(f"**{entity_type}**") |
|
st.markdown("• " + "\n• ".join(entities)) |
|
|
|
|
|
with col2: |
|
st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) |
|
st.image(analysis['entity_graph']) |