|
|
|
|
|
import streamlit as st
|
|
import logging
|
|
from ..utils.widget_utils import generate_unique_key
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from ..database.current_situation_mongo_db import store_current_situation_result
|
|
|
|
from ..database.writing_progress_mongo_db import (
|
|
store_writing_baseline,
|
|
store_writing_progress,
|
|
get_writing_baseline,
|
|
get_writing_progress,
|
|
get_latest_writing_metrics
|
|
)
|
|
|
|
from .current_situation_analysis import (
|
|
analyze_text_dimensions,
|
|
analyze_clarity,
|
|
analyze_vocabulary_diversity,
|
|
analyze_cohesion,
|
|
analyze_structure,
|
|
get_dependency_depths,
|
|
normalize_score,
|
|
generate_sentence_graphs,
|
|
generate_word_connections,
|
|
generate_connection_paths,
|
|
create_vocabulary_network,
|
|
create_syntax_complexity_graph,
|
|
create_cohesion_heatmap
|
|
)
|
|
|
|
|
|
plt.rcParams['font.family'] = 'sans-serif'
|
|
plt.rcParams['axes.grid'] = True
|
|
plt.rcParams['axes.spines.top'] = False
|
|
plt.rcParams['axes.spines.right'] = False
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
TEXT_TYPES = {
|
|
'academic_article': {
|
|
'name': 'Artículo Académico',
|
|
'thresholds': {
|
|
'vocabulary': {'min': 0.70, 'target': 0.85},
|
|
'structure': {'min': 0.75, 'target': 0.90},
|
|
'cohesion': {'min': 0.65, 'target': 0.80},
|
|
'clarity': {'min': 0.70, 'target': 0.85}
|
|
}
|
|
},
|
|
'student_essay': {
|
|
'name': 'Trabajo Universitario',
|
|
'thresholds': {
|
|
'vocabulary': {'min': 0.60, 'target': 0.75},
|
|
'structure': {'min': 0.65, 'target': 0.80},
|
|
'cohesion': {'min': 0.55, 'target': 0.70},
|
|
'clarity': {'min': 0.60, 'target': 0.75}
|
|
}
|
|
},
|
|
'general_communication': {
|
|
'name': 'Comunicación General',
|
|
'thresholds': {
|
|
'vocabulary': {'min': 0.50, 'target': 0.65},
|
|
'structure': {'min': 0.55, 'target': 0.70},
|
|
'cohesion': {'min': 0.45, 'target': 0.60},
|
|
'clarity': {'min': 0.50, 'target': 0.65}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
ANALYSIS_DIMENSION_MAPPING = {
|
|
'morphosyntactic': {
|
|
'primary': ['vocabulary', 'clarity'],
|
|
'secondary': ['structure'],
|
|
'tools': ['arc_diagrams', 'word_repetition']
|
|
},
|
|
'semantic': {
|
|
'primary': ['cohesion', 'structure'],
|
|
'secondary': ['vocabulary'],
|
|
'tools': ['concept_graphs', 'semantic_networks']
|
|
},
|
|
'discourse': {
|
|
'primary': ['cohesion', 'structure'],
|
|
'secondary': ['clarity'],
|
|
'tools': ['comparative_analysis']
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
def display_current_situation_interface(lang_code, nlp_models, t):
|
|
"""
|
|
TAB:
|
|
- Expander con radio para tipo de texto
|
|
Contenedor-1 con expanders:
|
|
- Expander "Métricas de la línea base"
|
|
- Expander "Métricas de la iteración"
|
|
Contenedor-2 (2 columnas):
|
|
- Col1: Texto base
|
|
- Col2: Texto iteración
|
|
Al final, Recomendaciones en un expander (una sola “fila”).
|
|
"""
|
|
|
|
|
|
if 'base_text' not in st.session_state:
|
|
st.session_state.base_text = ""
|
|
if 'iter_text' not in st.session_state:
|
|
st.session_state.iter_text = ""
|
|
if 'base_metrics' not in st.session_state:
|
|
st.session_state.base_metrics = {}
|
|
if 'iter_metrics' not in st.session_state:
|
|
st.session_state.iter_metrics = {}
|
|
if 'show_base' not in st.session_state:
|
|
st.session_state.show_base = False
|
|
if 'show_iter' not in st.session_state:
|
|
st.session_state.show_iter = False
|
|
|
|
|
|
tabs = st.tabs(["Análisis de Texto"])
|
|
with tabs[0]:
|
|
|
|
with st.expander("Selecciona el tipo de texto", expanded=True):
|
|
text_type = st.radio(
|
|
"¿Qué tipo de texto quieres analizar?",
|
|
options=list(TEXT_TYPES.keys()),
|
|
format_func=lambda x: TEXT_TYPES[x]['name'],
|
|
index=0
|
|
)
|
|
st.session_state.current_text_type = text_type
|
|
|
|
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
with st.container():
|
|
|
|
with st.expander("Métricas de la línea base", expanded=False):
|
|
if st.session_state.show_base and st.session_state.base_metrics:
|
|
|
|
display_metrics_in_one_row(st.session_state.base_metrics, text_type)
|
|
else:
|
|
|
|
display_empty_metrics_row()
|
|
|
|
|
|
with st.expander("Métricas de la iteración", expanded=False):
|
|
if st.session_state.show_iter and st.session_state.iter_metrics:
|
|
display_metrics_in_one_row(st.session_state.iter_metrics, text_type)
|
|
else:
|
|
display_empty_metrics_row()
|
|
|
|
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
with st.container():
|
|
col_left, col_right = st.columns(2)
|
|
|
|
|
|
with col_left:
|
|
st.markdown("**Texto base**")
|
|
text_base = st.text_area(
|
|
label="",
|
|
value=st.session_state.base_text,
|
|
key="text_base_area",
|
|
placeholder="Pega aquí tu texto base",
|
|
)
|
|
if st.button("Analizar Base"):
|
|
with st.spinner("Analizando texto base..."):
|
|
doc = nlp_models[lang_code](text_base)
|
|
metrics = analyze_text_dimensions(doc)
|
|
|
|
st.session_state.base_text = text_base
|
|
st.session_state.base_metrics = metrics
|
|
st.session_state.show_base = True
|
|
|
|
st.session_state.show_iter = False
|
|
|
|
|
|
with col_right:
|
|
st.markdown("**Texto de iteración**")
|
|
text_iter = st.text_area(
|
|
label="",
|
|
value=st.session_state.iter_text,
|
|
key="text_iter_area",
|
|
placeholder="Edita y mejora tu texto...",
|
|
disabled=not st.session_state.show_base
|
|
)
|
|
if st.button("Analizar Iteración", disabled=not st.session_state.show_base):
|
|
with st.spinner("Analizando iteración..."):
|
|
doc = nlp_models[lang_code](text_iter)
|
|
metrics = analyze_text_dimensions(doc)
|
|
|
|
st.session_state.iter_text = text_iter
|
|
st.session_state.iter_metrics = metrics
|
|
st.session_state.show_iter = True
|
|
|
|
|
|
|
|
|
|
if st.session_state.show_iter:
|
|
with st.expander("Recomendaciones", expanded=False):
|
|
reco_list = []
|
|
for dimension, values in st.session_state.iter_metrics.items():
|
|
score = values['normalized_score']
|
|
target = TEXT_TYPES[text_type]['thresholds'][dimension]['target']
|
|
if score < target:
|
|
|
|
suggestions = suggest_improvement_tools_list(dimension)
|
|
reco_list.extend(suggestions)
|
|
|
|
if reco_list:
|
|
|
|
st.write(" | ".join(reco_list))
|
|
else:
|
|
st.info("¡No hay recomendaciones! Todas las métricas superan la meta.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def display_metrics_in_one_row(metrics, text_type):
|
|
"""
|
|
Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad)
|
|
en una sola línea, usando 4 columnas con ancho uniforme.
|
|
"""
|
|
thresholds = TEXT_TYPES[text_type]['thresholds']
|
|
dimensions = ["vocabulary", "structure", "cohesion", "clarity"]
|
|
|
|
col1, col2, col3, col4 = st.columns([1,1,1,1])
|
|
cols = [col1, col2, col3, col4]
|
|
|
|
for dim, col in zip(dimensions, cols):
|
|
score = metrics[dim]['normalized_score']
|
|
target = thresholds[dim]['target']
|
|
min_val = thresholds[dim]['min']
|
|
|
|
if score < min_val:
|
|
status = "⚠️ Por mejorar"
|
|
color = "inverse"
|
|
elif score < target:
|
|
status = "📈 Aceptable"
|
|
color = "off"
|
|
else:
|
|
status = "✅ Óptimo"
|
|
color = "normal"
|
|
|
|
with col:
|
|
col.metric(
|
|
label=dim.capitalize(),
|
|
value=f"{score:.2f}",
|
|
delta=f"{status} (Meta: {target:.2f})",
|
|
delta_color=color,
|
|
border=True
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def display_empty_metrics_row():
|
|
"""
|
|
Muestra una fila de 4 columnas vacías (Vocabulario, Estructura, Cohesión, Claridad).
|
|
Cada columna se dibuja con st.metric en blanco (“-”).
|
|
"""
|
|
empty_cols = st.columns([1,1,1,1])
|
|
labels = ["Vocabulario", "Estructura", "Cohesión", "Claridad"]
|
|
|
|
for col, lbl in zip(empty_cols, labels):
|
|
with col:
|
|
col.metric(
|
|
label=lbl,
|
|
value="-",
|
|
delta="",
|
|
border=True
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def display_metrics_analysis(metrics, text_type=None):
|
|
"""
|
|
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
|
"""
|
|
try:
|
|
|
|
text_type = text_type or 'student_essay'
|
|
|
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds']
|
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5])
|
|
|
|
|
|
with metrics_col:
|
|
metrics_config = [
|
|
{
|
|
'label': "Vocabulario",
|
|
'key': 'vocabulary',
|
|
'value': metrics['vocabulary']['normalized_score'],
|
|
'help': "Riqueza y variedad del vocabulario",
|
|
'thresholds': thresholds['vocabulary']
|
|
},
|
|
{
|
|
'label': "Estructura",
|
|
'key': 'structure',
|
|
'value': metrics['structure']['normalized_score'],
|
|
'help': "Organización y complejidad de oraciones",
|
|
'thresholds': thresholds['structure']
|
|
},
|
|
{
|
|
'label': "Cohesión",
|
|
'key': 'cohesion',
|
|
'value': metrics['cohesion']['normalized_score'],
|
|
'help': "Conexión y fluidez entre ideas",
|
|
'thresholds': thresholds['cohesion']
|
|
},
|
|
{
|
|
'label': "Claridad",
|
|
'key': 'clarity',
|
|
'value': metrics['clarity']['normalized_score'],
|
|
'help': "Facilidad de comprensión del texto",
|
|
'thresholds': thresholds['clarity']
|
|
}
|
|
]
|
|
|
|
|
|
for metric in metrics_config:
|
|
value = metric['value']
|
|
if value < metric['thresholds']['min']:
|
|
status = "⚠️ Por mejorar"
|
|
color = "inverse"
|
|
elif value < metric['thresholds']['target']:
|
|
status = "📈 Aceptable"
|
|
color = "off"
|
|
else:
|
|
status = "✅ Óptimo"
|
|
color = "normal"
|
|
|
|
st.metric(
|
|
metric['label'],
|
|
f"{value:.2f}",
|
|
f"{status} (Meta: {metric['thresholds']['target']:.2f})",
|
|
delta_color=color,
|
|
help=metric['help']
|
|
)
|
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando resultados: {str(e)}")
|
|
st.error("Error al mostrar los resultados")
|
|
|
|
def display_comparison_results(baseline_metrics, current_metrics):
|
|
"""Muestra comparación entre línea base y métricas actuales"""
|
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5])
|
|
|
|
with metrics_col:
|
|
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']:
|
|
baseline = baseline_metrics[dimension]['normalized_score']
|
|
current = current_metrics[dimension]['normalized_score']
|
|
delta = current - baseline
|
|
|
|
st.metric(
|
|
dimension.title(),
|
|
f"{current:.2f}",
|
|
f"{delta:+.2f}",
|
|
delta_color="normal" if delta >= 0 else "inverse"
|
|
)
|
|
|
|
|
|
if delta < 0:
|
|
suggest_improvement_tools(dimension)
|
|
|
|
with graph_col:
|
|
display_radar_chart_comparison(
|
|
baseline_metrics,
|
|
current_metrics
|
|
)
|
|
|
|
def display_metrics_and_suggestions(metrics, text_type, title, show_suggestions=False):
|
|
"""
|
|
Muestra métricas y opcionalmente sugerencias de mejora.
|
|
Args:
|
|
metrics: Diccionario con las métricas analizadas
|
|
text_type: Tipo de texto seleccionado
|
|
title: Título para las métricas ("Base" o "Iteración")
|
|
show_suggestions: Booleano para mostrar sugerencias
|
|
"""
|
|
try:
|
|
thresholds = TEXT_TYPES[text_type]['thresholds']
|
|
|
|
st.markdown(f"### Métricas {title}")
|
|
|
|
for dimension, values in metrics.items():
|
|
score = values['normalized_score']
|
|
target = thresholds[dimension]['target']
|
|
min_val = thresholds[dimension]['min']
|
|
|
|
|
|
if score < min_val:
|
|
status = "⚠️ Por mejorar"
|
|
color = "inverse"
|
|
elif score < target:
|
|
status = "📈 Aceptable"
|
|
color = "off"
|
|
else:
|
|
status = "✅ Óptimo"
|
|
color = "normal"
|
|
|
|
|
|
st.metric(
|
|
dimension.title(),
|
|
f"{score:.2f}",
|
|
f"{status} (Meta: {target:.2f})",
|
|
delta_color=color,
|
|
help=f"Meta: {target:.2f}, Mínimo: {min_val:.2f}"
|
|
)
|
|
|
|
|
|
if show_suggestions and score < target:
|
|
suggest_improvement_tools(dimension)
|
|
|
|
|
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando métricas: {str(e)}")
|
|
st.error("Error al mostrar métricas")
|
|
|
|
def display_radar_chart(metrics_config, thresholds, baseline_metrics=None):
|
|
"""
|
|
Muestra el gráfico radar con los resultados.
|
|
Args:
|
|
metrics_config: Configuración actual de métricas
|
|
thresholds: Umbrales para las métricas
|
|
baseline_metrics: Métricas de línea base (opcional)
|
|
"""
|
|
try:
|
|
|
|
categories = [m['label'] for m in metrics_config]
|
|
values_current = [m['value'] for m in metrics_config]
|
|
min_values = [m['thresholds']['min'] for m in metrics_config]
|
|
target_values = [m['thresholds']['target'] for m in metrics_config]
|
|
|
|
|
|
fig = plt.figure(figsize=(8, 8))
|
|
ax = fig.add_subplot(111, projection='polar')
|
|
|
|
|
|
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
|
|
angles += angles[:1]
|
|
values_current += values_current[:1]
|
|
min_values += min_values[:1]
|
|
target_values += target_values[:1]
|
|
|
|
|
|
ax.set_xticks(angles[:-1])
|
|
ax.set_xticklabels(categories, fontsize=10)
|
|
circle_ticks = np.arange(0, 1.1, 0.2)
|
|
ax.set_yticks(circle_ticks)
|
|
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
|
ax.set_ylim(0, 1)
|
|
|
|
|
|
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1,
|
|
label='Mínimo', alpha=0.5)
|
|
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1,
|
|
label='Meta', alpha=0.5)
|
|
ax.fill_between(angles, target_values, [1]*len(angles),
|
|
color='#2ecc71', alpha=0.1)
|
|
ax.fill_between(angles, [0]*len(angles), min_values,
|
|
color='#e74c3c', alpha=0.1)
|
|
|
|
|
|
if baseline_metrics is not None:
|
|
values_baseline = [baseline_metrics[m['key']]['normalized_score']
|
|
for m in metrics_config]
|
|
values_baseline += values_baseline[:1]
|
|
ax.plot(angles, values_baseline, '#888888', linewidth=2,
|
|
label='Línea base', linestyle='--')
|
|
ax.fill(angles, values_baseline, '#888888', alpha=0.1)
|
|
|
|
|
|
label = 'Actual' if baseline_metrics else 'Tu escritura'
|
|
color = '#3498db' if baseline_metrics else '#3498db'
|
|
|
|
ax.plot(angles, values_current, color, linewidth=2, label=label)
|
|
ax.fill(angles, values_current, color, alpha=0.2)
|
|
|
|
|
|
legend_handles = []
|
|
if baseline_metrics:
|
|
legend_handles.extend([
|
|
plt.Line2D([], [], color='#888888', linestyle='--',
|
|
label='Línea base'),
|
|
plt.Line2D([], [], color='#3498db', label='Actual')
|
|
])
|
|
else:
|
|
legend_handles.extend([
|
|
plt.Line2D([], [], color='#3498db', label='Tu escritura')
|
|
])
|
|
|
|
legend_handles.extend([
|
|
plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'),
|
|
plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta')
|
|
])
|
|
|
|
ax.legend(
|
|
handles=legend_handles,
|
|
loc='upper right',
|
|
bbox_to_anchor=(1.3, 1.1),
|
|
fontsize=10,
|
|
frameon=True,
|
|
facecolor='white',
|
|
edgecolor='none',
|
|
shadow=True
|
|
)
|
|
|
|
plt.tight_layout()
|
|
st.pyplot(fig)
|
|
plt.close()
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando gráfico radar: {str(e)}")
|
|
st.error("Error al mostrar el gráfico")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def suggest_improvement_tools_list(dimension):
|
|
"""
|
|
Retorna en forma de lista las herramientas sugeridas
|
|
basadas en 'ANALYSIS_DIMENSION_MAPPING'.
|
|
"""
|
|
suggestions = []
|
|
for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items():
|
|
|
|
if dimension in mapping['primary'] or dimension in mapping['secondary']:
|
|
suggestions.extend(mapping['tools'])
|
|
|
|
return suggestions if suggestions else ["Sin sugerencias específicas."]
|
|
|
|
|
|
def prepare_metrics_config(metrics, text_type='student_essay'):
|
|
"""
|
|
Prepara la configuración de métricas en el mismo formato que display_results.
|
|
Args:
|
|
metrics: Diccionario con las métricas analizadas
|
|
text_type: Tipo de texto para los umbrales
|
|
Returns:
|
|
list: Lista de configuraciones de métricas
|
|
"""
|
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds']
|
|
|
|
|
|
return [
|
|
{
|
|
'label': "Vocabulario",
|
|
'key': 'vocabulary',
|
|
'value': metrics['vocabulary']['normalized_score'],
|
|
'help': "Riqueza y variedad del vocabulario",
|
|
'thresholds': thresholds['vocabulary']
|
|
},
|
|
{
|
|
'label': "Estructura",
|
|
'key': 'structure',
|
|
'value': metrics['structure']['normalized_score'],
|
|
'help': "Organización y complejidad de oraciones",
|
|
'thresholds': thresholds['structure']
|
|
},
|
|
{
|
|
'label': "Cohesión",
|
|
'key': 'cohesion',
|
|
'value': metrics['cohesion']['normalized_score'],
|
|
'help': "Conexión y fluidez entre ideas",
|
|
'thresholds': thresholds['cohesion']
|
|
},
|
|
{
|
|
'label': "Claridad",
|
|
'key': 'clarity',
|
|
'value': metrics['clarity']['normalized_score'],
|
|
'help': "Facilidad de comprensión del texto",
|
|
'thresholds': thresholds['clarity']
|
|
}
|
|
]
|
|
|
|
|