|
|
|
|
|
import streamlit as st
|
|
import logging
|
|
from ..utils.widget_utils import generate_unique_key
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from ..database.current_situation_mongo_db import store_current_situation_result
|
|
|
|
from .current_situation_analysis import (
|
|
analyze_text_dimensions,
|
|
analyze_clarity,
|
|
analyze_reference_clarity,
|
|
analyze_vocabulary_diversity,
|
|
analyze_cohesion,
|
|
analyze_structure,
|
|
get_dependency_depths,
|
|
normalize_score,
|
|
generate_sentence_graphs,
|
|
generate_word_connections,
|
|
generate_connection_paths,
|
|
create_vocabulary_network,
|
|
create_syntax_complexity_graph,
|
|
create_cohesion_heatmap,
|
|
)
|
|
|
|
|
|
plt.rcParams['font.family'] = 'sans-serif'
|
|
plt.rcParams['axes.grid'] = True
|
|
plt.rcParams['axes.spines.top'] = False
|
|
plt.rcParams['axes.spines.right'] = False
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def display_current_situation_interface(lang_code, nlp_models, t):
|
|
"""
|
|
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
|
"""
|
|
try:
|
|
|
|
if 'text_input' not in st.session_state:
|
|
st.session_state.text_input = ""
|
|
if 'show_results' not in st.session_state:
|
|
st.session_state.show_results = False
|
|
if 'current_doc' not in st.session_state:
|
|
st.session_state.current_doc = None
|
|
if 'current_metrics' not in st.session_state:
|
|
st.session_state.current_metrics = None
|
|
|
|
st.markdown("## Análisis Inicial de Escritura")
|
|
|
|
|
|
with st.container():
|
|
input_col, results_col = st.columns([1,2])
|
|
|
|
with input_col:
|
|
|
|
|
|
|
|
def on_text_change():
|
|
st.session_state.text_input = st.session_state.text_area
|
|
st.session_state.show_results = False
|
|
|
|
|
|
text_input = st.text_area(
|
|
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
|
height=400,
|
|
key="text_area",
|
|
value=st.session_state.text_input,
|
|
on_change=on_text_change,
|
|
help="Este texto será analizado para darte recomendaciones personalizadas"
|
|
)
|
|
|
|
if st.button(
|
|
t.get('analyze_button', "Analizar mi escritura"),
|
|
type="primary",
|
|
disabled=not text_input.strip(),
|
|
use_container_width=True,
|
|
):
|
|
try:
|
|
with st.spinner(t.get('processing', "Analizando...")):
|
|
doc = nlp_models[lang_code](text_input)
|
|
metrics = analyze_text_dimensions(doc)
|
|
|
|
|
|
storage_success = store_current_situation_result(
|
|
username=st.session_state.username,
|
|
text=text_input,
|
|
metrics=metrics,
|
|
feedback=None
|
|
)
|
|
|
|
if not storage_success:
|
|
logger.warning("No se pudo guardar el análisis en la base de datos")
|
|
|
|
st.session_state.current_doc = doc
|
|
st.session_state.current_metrics = metrics
|
|
st.session_state.show_results = True
|
|
st.session_state.text_input = text_input
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en análisis: {str(e)}")
|
|
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
|
|
|
|
|
with results_col:
|
|
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
|
display_radar_chart(st.session_state.current_metrics)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en interfaz: {str(e)}")
|
|
st.error("Ocurrió un error. Por favor, intente de nuevo.")
|
|
|
|
def display_radar_chart(metrics):
|
|
"""
|
|
Muestra un gráfico de radar con las métricas del usuario y el patrón ideal.
|
|
"""
|
|
try:
|
|
|
|
with st.container():
|
|
|
|
col1, col2, col3, col4 = st.columns(4)
|
|
with col1:
|
|
st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00")
|
|
with col2:
|
|
st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00")
|
|
with col3:
|
|
st.metric("Cohesión", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00")
|
|
with col4:
|
|
st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00")
|
|
|
|
|
|
_, graph_col, _ = st.columns([1,2,1])
|
|
|
|
with graph_col:
|
|
|
|
categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad']
|
|
values_user = [
|
|
metrics['vocabulary']['normalized_score'],
|
|
metrics['structure']['normalized_score'],
|
|
metrics['cohesion']['normalized_score'],
|
|
metrics['clarity']['normalized_score']
|
|
]
|
|
values_pattern = [1.0, 1.0, 1.0, 1.0]
|
|
|
|
|
|
fig = plt.figure(figsize=(6, 6))
|
|
ax = fig.add_subplot(111, projection='polar')
|
|
|
|
|
|
num_vars = len(categories)
|
|
|
|
|
|
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)]
|
|
angles += angles[:1]
|
|
|
|
|
|
values_user += values_user[:1]
|
|
values_pattern += values_pattern[:1]
|
|
|
|
|
|
ax.set_xticks(angles[:-1])
|
|
ax.set_xticklabels(categories, fontsize=8)
|
|
|
|
|
|
circle_ticks = np.arange(0, 1.1, 0.2)
|
|
ax.set_yticks(circle_ticks)
|
|
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
|
ax.set_ylim(0, 1)
|
|
|
|
|
|
ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patrón', alpha=0.5)
|
|
ax.fill(angles, values_pattern, 'g', alpha=0.1)
|
|
|
|
|
|
ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura')
|
|
ax.fill(angles, values_user, 'b', alpha=0.2)
|
|
|
|
|
|
ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8)
|
|
|
|
|
|
plt.tight_layout()
|
|
st.pyplot(fig)
|
|
plt.close()
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error generando gráfico de radar: {str(e)}")
|
|
st.error("Error al generar la visualización") |