|
|
|
|
|
|
|
import streamlit as st
|
|
import re
|
|
import io
|
|
from io import BytesIO
|
|
import pandas as pd
|
|
import numpy as np
|
|
import time
|
|
import matplotlib.pyplot as plt
|
|
from datetime import datetime
|
|
from spacy import displacy
|
|
import random
|
|
import base64
|
|
import seaborn as sns
|
|
import logging
|
|
|
|
|
|
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
|
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
|
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
|
from ..database.chat_mongo_db import get_chat_history
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def display_student_activities(username: str, lang_code: str, t: dict):
|
|
"""
|
|
Muestra todas las actividades del estudiante
|
|
Args:
|
|
username: Nombre del estudiante
|
|
lang_code: Código del idioma
|
|
t: Diccionario de traducciones
|
|
"""
|
|
try:
|
|
st.header(t.get('activities_title', 'Mis Actividades'))
|
|
|
|
|
|
tabs = st.tabs([
|
|
t.get('morpho_activities', 'Análisis Morfosintáctico'),
|
|
t.get('semantic_activities', 'Análisis Semántico'),
|
|
t.get('discourse_activities', 'Análisis del Discurso'),
|
|
t.get('chat_activities', 'Conversaciones con el Asistente')
|
|
])
|
|
|
|
|
|
with tabs[0]:
|
|
display_morphosyntax_activities(username, t)
|
|
|
|
|
|
with tabs[1]:
|
|
display_semantic_activities(username, t)
|
|
|
|
|
|
with tabs[2]:
|
|
display_discourse_activities(username, t)
|
|
|
|
|
|
with tabs[3]:
|
|
display_chat_activities(username, t)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando actividades: {str(e)}")
|
|
st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
|
|
|
|
|
|
def display_morphosyntax_activities(username: str, t: dict):
|
|
"""Muestra actividades de análisis morfosintáctico"""
|
|
try:
|
|
analyses = get_student_morphosyntax_analysis(username)
|
|
if not analyses:
|
|
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
|
|
return
|
|
|
|
for analysis in analyses:
|
|
with st.expander(
|
|
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
|
expanded=False
|
|
):
|
|
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
|
|
st.write(analysis['text'])
|
|
|
|
if 'arc_diagrams' in analysis:
|
|
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
|
|
for diagram in analysis['arc_diagrams']:
|
|
st.write(diagram, unsafe_allow_html=True)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
|
|
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
|
|
|
|
|
|
def display_semantic_activities(username: str, t: dict):
|
|
"""Muestra actividades de análisis semántico"""
|
|
try:
|
|
analyses = get_student_semantic_analysis(username)
|
|
if not analyses:
|
|
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
|
|
return
|
|
|
|
for analysis in analyses:
|
|
with st.expander(
|
|
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
|
expanded=False
|
|
):
|
|
|
|
|
|
if 'key_concepts' in analysis:
|
|
st.subheader(t.get('key_concepts', 'Conceptos clave'))
|
|
df = pd.DataFrame(
|
|
analysis['key_concepts'],
|
|
columns=['Concepto', 'Frecuencia']
|
|
)
|
|
st.dataframe(df)
|
|
|
|
|
|
if 'concept_graph' in analysis and analysis['concept_graph']:
|
|
st.subheader(t.get('concept_graph', 'Grafo de conceptos'))
|
|
image_bytes = base64.b64decode(analysis['concept_graph'])
|
|
st.image(image_bytes)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando análisis semántico: {str(e)}")
|
|
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
|
|
|
|
|
|
|
|
def display_discourse_activities(username: str, t: dict):
|
|
"""Muestra actividades de análisis del discurso"""
|
|
try:
|
|
analyses = get_student_discourse_analysis(username)
|
|
if not analyses:
|
|
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
|
return
|
|
|
|
for analysis in analyses:
|
|
with st.expander(
|
|
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
|
expanded=False
|
|
):
|
|
|
|
|
|
if 'key_concepts1' in analysis and 'key_concepts2' in analysis:
|
|
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
|
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
|
df1 = pd.DataFrame(
|
|
analysis['key_concepts1'],
|
|
columns=['Concepto', 'Frecuencia']
|
|
)
|
|
st.dataframe(df1)
|
|
|
|
with col2:
|
|
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
|
df2 = pd.DataFrame(
|
|
analysis['key_concepts2'],
|
|
columns=['Concepto', 'Frecuencia']
|
|
)
|
|
st.dataframe(df2)
|
|
|
|
|
|
if all(key in analysis for key in ['graph1', 'graph2']):
|
|
st.subheader(t.get('visualizations', 'Visualizaciones'))
|
|
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.markdown(f"**{t.get('graph_text_1', 'Grafo Texto 1')}**")
|
|
if analysis['graph1']:
|
|
image_bytes = base64.b64decode(analysis['graph1'])
|
|
st.image(image_bytes)
|
|
|
|
with col2:
|
|
st.markdown(f"**{t.get('graph_text_2', 'Grafo Texto 2')}**")
|
|
if analysis['graph2']:
|
|
image_bytes = base64.b64decode(analysis['graph2'])
|
|
st.image(image_bytes)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
|
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
|
|
|
|
|
def display_discourse_comparison(analysis: dict, t: dict):
|
|
"""Muestra la comparación de análisis del discurso"""
|
|
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
|
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
|
df1 = pd.DataFrame(analysis['key_concepts1'])
|
|
st.dataframe(df1)
|
|
|
|
with col2:
|
|
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
|
df2 = pd.DataFrame(analysis['key_concepts2'])
|
|
st.dataframe(df2)
|
|
|
|
|
|
|
|
|
|
def display_chat_activities(username: str, t: dict):
|
|
"""
|
|
Muestra historial de conversaciones del chat
|
|
"""
|
|
try:
|
|
|
|
chat_history = get_chat_history(
|
|
username=username,
|
|
analysis_type='sidebar',
|
|
limit=50
|
|
)
|
|
|
|
if not chat_history:
|
|
st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
|
|
return
|
|
|
|
for chat in reversed(chat_history):
|
|
try:
|
|
|
|
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
|
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
|
|
|
with st.expander(
|
|
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
|
|
expanded=False
|
|
):
|
|
if 'messages' in chat and chat['messages']:
|
|
|
|
for message in chat['messages']:
|
|
role = message.get('role', 'unknown')
|
|
content = message.get('content', '')
|
|
|
|
|
|
with st.chat_message(role):
|
|
st.markdown(content)
|
|
|
|
|
|
st.divider()
|
|
else:
|
|
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando conversación: {str(e)}")
|
|
continue
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando historial del chat: {str(e)}")
|
|
st.error(t.get('error_chat', 'Error al mostrar historial del chat')) |