|
|
|
|
|
import streamlit as st
|
|
import logging
|
|
from ..utils.widget_utils import generate_unique_key
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from ..database.current_situation_mongo_db import store_current_situation_result
|
|
|
|
|
|
from translations import get_translations
|
|
|
|
from .current_situation_analysis import (
|
|
analyze_text_dimensions,
|
|
analyze_clarity,
|
|
analyze_vocabulary_diversity,
|
|
analyze_cohesion,
|
|
analyze_structure,
|
|
get_dependency_depths,
|
|
normalize_score,
|
|
generate_sentence_graphs,
|
|
generate_word_connections,
|
|
generate_connection_paths,
|
|
create_vocabulary_network,
|
|
create_syntax_complexity_graph,
|
|
create_cohesion_heatmap,
|
|
generate_recommendations
|
|
)
|
|
|
|
|
|
plt.rcParams['font.family'] = 'sans-serif'
|
|
plt.rcParams['axes.grid'] = True
|
|
plt.rcParams['axes.spines.top'] = False
|
|
plt.rcParams['axes.spines.right'] = False
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
TEXT_TYPES = {
|
|
'academic_article': {
|
|
'name': 'Artículo Académico',
|
|
'thresholds': {
|
|
'vocabulary': {'min': 0.70, 'target': 0.85},
|
|
'structure': {'min': 0.75, 'target': 0.90},
|
|
'cohesion': {'min': 0.65, 'target': 0.80},
|
|
'clarity': {'min': 0.70, 'target': 0.85}
|
|
}
|
|
},
|
|
'student_essay': {
|
|
'name': 'Trabajo Universitario',
|
|
'thresholds': {
|
|
'vocabulary': {'min': 0.60, 'target': 0.75},
|
|
'structure': {'min': 0.65, 'target': 0.80},
|
|
'cohesion': {'min': 0.55, 'target': 0.70},
|
|
'clarity': {'min': 0.60, 'target': 0.75}
|
|
}
|
|
},
|
|
'general_communication': {
|
|
'name': 'Comunicación General',
|
|
'thresholds': {
|
|
'vocabulary': {'min': 0.50, 'target': 0.65},
|
|
'structure': {'min': 0.55, 'target': 0.70},
|
|
'cohesion': {'min': 0.45, 'target': 0.60},
|
|
'clarity': {'min': 0.50, 'target': 0.65}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
def display_current_situation_interface(lang_code, nlp_models, t):
|
|
"""
|
|
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
|
"""
|
|
|
|
if 'text_input' not in st.session_state:
|
|
st.session_state.text_input = ""
|
|
if 'text_area' not in st.session_state:
|
|
st.session_state.text_area = ""
|
|
if 'show_results' not in st.session_state:
|
|
st.session_state.show_results = False
|
|
if 'current_doc' not in st.session_state:
|
|
st.session_state.current_doc = None
|
|
if 'current_metrics' not in st.session_state:
|
|
st.session_state.current_metrics = None
|
|
|
|
try:
|
|
|
|
with st.container():
|
|
input_col, results_col = st.columns([1,2])
|
|
|
|
with input_col:
|
|
|
|
text_input = st.text_area(
|
|
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
|
height=400,
|
|
key="text_area",
|
|
value=st.session_state.text_input,
|
|
help="Este texto será analizado para darte recomendaciones personalizadas"
|
|
)
|
|
|
|
|
|
if text_input != st.session_state.text_input:
|
|
st.session_state.text_input = text_input
|
|
st.session_state.show_results = False
|
|
|
|
if st.button(
|
|
t.get('analyze_button', "Analizar mi escritura"),
|
|
type="primary",
|
|
disabled=not text_input.strip(),
|
|
use_container_width=True,
|
|
):
|
|
try:
|
|
with st.spinner(t.get('processing', "Analizando...")):
|
|
doc = nlp_models[lang_code](text_input)
|
|
metrics = analyze_text_dimensions(doc)
|
|
|
|
storage_success = store_current_situation_result(
|
|
username=st.session_state.username,
|
|
text=text_input,
|
|
metrics=metrics,
|
|
feedback=None
|
|
)
|
|
|
|
if not storage_success:
|
|
logger.warning("No se pudo guardar el análisis en la base de datos")
|
|
|
|
st.session_state.current_doc = doc
|
|
st.session_state.current_metrics = metrics
|
|
st.session_state.show_results = True
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en análisis: {str(e)}")
|
|
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
|
|
|
|
|
with results_col:
|
|
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
|
|
|
st.markdown("### Tipo de texto")
|
|
text_type = st.radio(
|
|
"",
|
|
options=list(TEXT_TYPES.keys()),
|
|
format_func=lambda x: TEXT_TYPES[x]['name'],
|
|
horizontal=True,
|
|
key="text_type_radio",
|
|
help="Selecciona el tipo de texto para ajustar los criterios de evaluación"
|
|
)
|
|
|
|
st.session_state.current_text_type = text_type
|
|
|
|
|
|
display_results(
|
|
metrics=st.session_state.current_metrics,
|
|
text_type=text_type
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en interfaz principal: {str(e)}")
|
|
st.error("Ocurrió un error al cargar la interfaz")
|
|
|
|
|
|
|
|
'''
|
|
def display_results(metrics, text_type=None):
|
|
"""
|
|
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
|
"""
|
|
try:
|
|
# Usar valor por defecto si no se especifica tipo
|
|
text_type = text_type or 'student_essay'
|
|
|
|
# Obtener umbrales según el tipo de texto
|
|
thresholds = TEXT_TYPES[text_type]['thresholds']
|
|
|
|
# Crear dos columnas para las métricas y el gráfico
|
|
metrics_col, graph_col = st.columns([1, 1.5])
|
|
|
|
# Columna de métricas
|
|
with metrics_col:
|
|
metrics_config = [
|
|
{
|
|
'label': "Vocabulario",
|
|
'key': 'vocabulary',
|
|
'value': metrics['vocabulary']['normalized_score'],
|
|
'help': "Riqueza y variedad del vocabulario",
|
|
'thresholds': thresholds['vocabulary']
|
|
},
|
|
{
|
|
'label': "Estructura",
|
|
'key': 'structure',
|
|
'value': metrics['structure']['normalized_score'],
|
|
'help': "Organización y complejidad de oraciones",
|
|
'thresholds': thresholds['structure']
|
|
},
|
|
{
|
|
'label': "Cohesión",
|
|
'key': 'cohesion',
|
|
'value': metrics['cohesion']['normalized_score'],
|
|
'help': "Conexión y fluidez entre ideas",
|
|
'thresholds': thresholds['cohesion']
|
|
},
|
|
{
|
|
'label': "Claridad",
|
|
'key': 'clarity',
|
|
'value': metrics['clarity']['normalized_score'],
|
|
'help': "Facilidad de comprensión del texto",
|
|
'thresholds': thresholds['clarity']
|
|
}
|
|
]
|
|
|
|
# Mostrar métricas
|
|
for metric in metrics_config:
|
|
value = metric['value']
|
|
if value < metric['thresholds']['min']:
|
|
status = "⚠️ Por mejorar"
|
|
color = "inverse"
|
|
elif value < metric['thresholds']['target']:
|
|
status = "📈 Aceptable"
|
|
color = "off"
|
|
else:
|
|
status = "✅ Óptimo"
|
|
color = "normal"
|
|
|
|
st.metric(
|
|
metric['label'],
|
|
f"{value:.2f}",
|
|
f"{status} (Meta: {metric['thresholds']['target']:.2f})",
|
|
delta_color=color,
|
|
help=metric['help']
|
|
)
|
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
|
|
|
# Gráfico radar en la columna derecha
|
|
with graph_col:
|
|
display_radar_chart(metrics_config, thresholds)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando resultados: {str(e)}")
|
|
st.error("Error al mostrar los resultados")
|
|
'''
|
|
|
|
|
|
|
|
def display_results(metrics, text_type=None):
|
|
"""
|
|
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
|
"""
|
|
try:
|
|
|
|
text_type = text_type or 'student_essay'
|
|
|
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds']
|
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5])
|
|
|
|
|
|
with metrics_col:
|
|
metrics_config = [
|
|
{
|
|
'label': "Vocabulario",
|
|
'key': 'vocabulary',
|
|
'value': metrics['vocabulary']['normalized_score'],
|
|
'help': "Riqueza y variedad del vocabulario",
|
|
'thresholds': thresholds['vocabulary']
|
|
},
|
|
{
|
|
'label': "Estructura",
|
|
'key': 'structure',
|
|
'value': metrics['structure']['normalized_score'],
|
|
'help': "Organización y complejidad de oraciones",
|
|
'thresholds': thresholds['structure']
|
|
},
|
|
{
|
|
'label': "Cohesión",
|
|
'key': 'cohesion',
|
|
'value': metrics['cohesion']['normalized_score'],
|
|
'help': "Conexión y fluidez entre ideas",
|
|
'thresholds': thresholds['cohesion']
|
|
},
|
|
{
|
|
'label': "Claridad",
|
|
'key': 'clarity',
|
|
'value': metrics['clarity']['normalized_score'],
|
|
'help': "Facilidad de comprensión del texto",
|
|
'thresholds': thresholds['clarity']
|
|
}
|
|
]
|
|
|
|
|
|
for metric in metrics_config:
|
|
value = metric['value']
|
|
if value < metric['thresholds']['min']:
|
|
status = "⚠️ Por mejorar"
|
|
color = "inverse"
|
|
elif value < metric['thresholds']['target']:
|
|
status = "📈 Aceptable"
|
|
color = "off"
|
|
else:
|
|
status = "✅ Óptimo"
|
|
color = "normal"
|
|
|
|
st.metric(
|
|
metric['label'],
|
|
f"{value:.2f}",
|
|
f"{status} (Meta: {metric['thresholds']['target']:.2f})",
|
|
delta_color=color,
|
|
help=metric['help']
|
|
)
|
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
|
|
|
|
|
with graph_col:
|
|
display_radar_chart(metrics_config, thresholds)
|
|
|
|
recommendations = generate_recommendations(
|
|
metrics=metrics,
|
|
text_type=text_type,
|
|
lang_code=st.session_state.lang_code
|
|
)
|
|
|
|
|
|
st.markdown("---")
|
|
|
|
|
|
st.subheader("Recomendaciones para mejorar tu escritura")
|
|
|
|
|
|
display_recommendations(recommendations, get_translations(st.session_state.lang_code))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando resultados: {str(e)}")
|
|
st.error("Error al mostrar los resultados")
|
|
|
|
|
|
|
|
|
|
def display_radar_chart(metrics_config, thresholds):
|
|
"""
|
|
Muestra el gráfico radar con los resultados.
|
|
"""
|
|
try:
|
|
|
|
categories = [m['label'] for m in metrics_config]
|
|
values_user = [m['value'] for m in metrics_config]
|
|
min_values = [m['thresholds']['min'] for m in metrics_config]
|
|
target_values = [m['thresholds']['target'] for m in metrics_config]
|
|
|
|
|
|
fig = plt.figure(figsize=(8, 8))
|
|
ax = fig.add_subplot(111, projection='polar')
|
|
|
|
|
|
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
|
|
angles += angles[:1]
|
|
values_user += values_user[:1]
|
|
min_values += min_values[:1]
|
|
target_values += target_values[:1]
|
|
|
|
|
|
ax.set_xticks(angles[:-1])
|
|
ax.set_xticklabels(categories, fontsize=10)
|
|
circle_ticks = np.arange(0, 1.1, 0.2)
|
|
ax.set_yticks(circle_ticks)
|
|
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
|
ax.set_ylim(0, 1)
|
|
|
|
|
|
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5)
|
|
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5)
|
|
ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1)
|
|
ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1)
|
|
|
|
|
|
ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura')
|
|
ax.fill(angles, values_user, '#3498db', alpha=0.2)
|
|
|
|
|
|
ax.legend(
|
|
loc='upper right',
|
|
bbox_to_anchor=(1.3, 1.1),
|
|
fontsize=10,
|
|
frameon=True,
|
|
facecolor='white',
|
|
edgecolor='none',
|
|
shadow=True
|
|
)
|
|
|
|
plt.tight_layout()
|
|
st.pyplot(fig)
|
|
plt.close()
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error mostrando gráfico radar: {str(e)}")
|
|
st.error("Error al mostrar el gráfico")
|
|
|
|
|
|
def display_recommendations(recommendations, t):
|
|
"""
|
|
Muestra las recomendaciones con un diseño de tarjetas.
|
|
"""
|
|
|
|
colors = {
|
|
'vocabulary': '#2E86C1',
|
|
'structure': '#28B463',
|
|
'cohesion': '#F39C12',
|
|
'clarity': '#9B59B6',
|
|
'priority': '#E74C3C'
|
|
}
|
|
|
|
|
|
icons = {
|
|
'vocabulary': '📚',
|
|
'structure': '🏗️',
|
|
'cohesion': '🔄',
|
|
'clarity': '💡',
|
|
'priority': '⭐'
|
|
}
|
|
|
|
|
|
dimension_names = {
|
|
'vocabulary': t.get('SITUATION_ANALYSIS', {}).get('vocabulary', "Vocabulario"),
|
|
'structure': t.get('SITUATION_ANALYSIS', {}).get('structure', "Estructura"),
|
|
'cohesion': t.get('SITUATION_ANALYSIS', {}).get('cohesion', "Cohesión"),
|
|
'clarity': t.get('SITUATION_ANALYSIS', {}).get('clarity', "Claridad"),
|
|
'priority': t.get('SITUATION_ANALYSIS', {}).get('priority', "Prioridad")
|
|
}
|
|
|
|
|
|
priority_focus = t.get('SITUATION_ANALYSIS', {}).get('priority_focus', 'Área prioritaria para mejorar')
|
|
st.markdown(f"### {icons['priority']} {priority_focus}")
|
|
|
|
|
|
priority_area = recommendations.get('priority', 'vocabulary')
|
|
priority_title = dimension_names.get(priority_area, "Área prioritaria")
|
|
|
|
|
|
if isinstance(recommendations[priority_area], dict) and 'title' in recommendations[priority_area]:
|
|
priority_title = recommendations[priority_area]['title']
|
|
priority_content = recommendations[priority_area]['content']
|
|
else:
|
|
priority_content = recommendations[priority_area]
|
|
|
|
|
|
with st.container():
|
|
st.markdown(
|
|
f"""
|
|
<div style="border:2px solid {colors['priority']}; border-radius:5px; padding:15px; margin-bottom:20px;">
|
|
<h4 style="color:{colors['priority']};">{priority_title}</h4>
|
|
<p>{priority_content}</p>
|
|
</div>
|
|
""",
|
|
unsafe_allow_html=True
|
|
)
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
|
|
categories = ['vocabulary', 'structure', 'cohesion', 'clarity']
|
|
for i, category in enumerate(categories):
|
|
|
|
if category == priority_area:
|
|
continue
|
|
|
|
|
|
if isinstance(recommendations[category], dict) and 'title' in recommendations[category]:
|
|
category_title = recommendations[category]['title']
|
|
category_content = recommendations[category]['content']
|
|
else:
|
|
category_title = dimension_names.get(category, category)
|
|
category_content = recommendations[category]
|
|
|
|
|
|
with col1 if i % 2 == 0 else col2:
|
|
|
|
st.markdown(
|
|
f"""
|
|
<div style="border:1px solid {colors[category]}; border-radius:5px; padding:10px; margin-bottom:15px;">
|
|
<h4 style="color:{colors[category]};">{icons[category]} {category_title}</h4>
|
|
<p>{category_content}</p>
|
|
</div>
|
|
""",
|
|
unsafe_allow_html=True
|
|
) |