|
|
|
|
|
import streamlit as st
|
|
import matplotlib.pyplot as plt
|
|
import networkx as nx
|
|
import seaborn as sns
|
|
from collections import Counter
|
|
from itertools import combinations
|
|
import numpy as np
|
|
import matplotlib.patches as patches
|
|
import logging
|
|
|
|
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
handlers=[
|
|
logging.StreamHandler(),
|
|
logging.FileHandler('app.log')
|
|
]
|
|
)
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
def correlate_metrics(scores):
|
|
"""
|
|
Ajusta los scores para mantener correlaciones l贸gicas entre m茅tricas.
|
|
|
|
Args:
|
|
scores: dict con scores iniciales de vocabulario, estructura, cohesi贸n y claridad
|
|
|
|
Returns:
|
|
dict con scores ajustados
|
|
"""
|
|
try:
|
|
|
|
|
|
min_cohesion = scores['structure']['normalized_score'] * 0.7
|
|
if scores['cohesion']['normalized_score'] < min_cohesion:
|
|
scores['cohesion']['normalized_score'] = min_cohesion
|
|
|
|
|
|
|
|
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
|
|
scores['cohesion']['normalized_score'] = max(
|
|
scores['cohesion']['normalized_score'],
|
|
vocab_influence
|
|
)
|
|
|
|
|
|
|
|
max_clarity = scores['cohesion']['normalized_score'] * 1.2
|
|
if scores['clarity']['normalized_score'] > max_clarity:
|
|
scores['clarity']['normalized_score'] = max_clarity
|
|
|
|
|
|
|
|
struct_max_clarity = scores['structure']['normalized_score'] * 1.1
|
|
scores['clarity']['normalized_score'] = min(
|
|
scores['clarity']['normalized_score'],
|
|
struct_max_clarity
|
|
)
|
|
|
|
|
|
for metric in scores:
|
|
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
|
|
|
|
return scores
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en correlate_metrics: {str(e)}")
|
|
return scores
|
|
|
|
|
|
|
|
def analyze_text_dimensions(doc):
|
|
"""
|
|
Analiza las dimensiones principales del texto manteniendo correlaciones l贸gicas.
|
|
"""
|
|
try:
|
|
|
|
vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
|
|
struct_score = analyze_structure(doc)
|
|
cohesion_score = analyze_cohesion(doc)
|
|
clarity_score, clarity_details = analyze_clarity(doc)
|
|
|
|
|
|
scores = {
|
|
'vocabulary': {
|
|
'normalized_score': vocab_score,
|
|
'details': vocab_details
|
|
},
|
|
'structure': {
|
|
'normalized_score': struct_score,
|
|
'details': None
|
|
},
|
|
'cohesion': {
|
|
'normalized_score': cohesion_score,
|
|
'details': None
|
|
},
|
|
'clarity': {
|
|
'normalized_score': clarity_score,
|
|
'details': clarity_details
|
|
}
|
|
}
|
|
|
|
|
|
adjusted_scores = correlate_metrics(scores)
|
|
|
|
|
|
logger.info(f"""
|
|
Scores originales vs ajustados:
|
|
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
|
|
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
|
|
Cohesi贸n: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
|
|
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
|
|
""")
|
|
|
|
return adjusted_scores
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
|
|
return {
|
|
'vocabulary': {'normalized_score': 0.0, 'details': {}},
|
|
'structure': {'normalized_score': 0.0, 'details': {}},
|
|
'cohesion': {'normalized_score': 0.0, 'details': {}},
|
|
'clarity': {'normalized_score': 0.0, 'details': {}}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def analyze_clarity(doc):
|
|
"""
|
|
Analiza la claridad del texto considerando m煤ltiples factores.
|
|
"""
|
|
try:
|
|
sentences = list(doc.sents)
|
|
if not sentences:
|
|
return 0.0, {}
|
|
|
|
|
|
sentence_lengths = [len(sent) for sent in sentences]
|
|
avg_length = sum(sentence_lengths) / len(sentences)
|
|
|
|
|
|
length_score = normalize_score(
|
|
value=avg_length,
|
|
metric_type='clarity',
|
|
optimal_length=20,
|
|
min_threshold=0.60,
|
|
target_threshold=0.75
|
|
)
|
|
|
|
|
|
connector_count = 0
|
|
connector_weights = {
|
|
'CCONJ': 1.0,
|
|
'SCONJ': 1.2,
|
|
'ADV': 0.8
|
|
}
|
|
|
|
for token in doc:
|
|
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
|
|
connector_count += connector_weights[token.pos_]
|
|
|
|
|
|
connectors_per_sentence = connector_count / len(sentences) if sentences else 0
|
|
connector_score = normalize_score(
|
|
value=connectors_per_sentence,
|
|
metric_type='clarity',
|
|
optimal_connections=1.5,
|
|
min_threshold=0.60,
|
|
target_threshold=0.75
|
|
)
|
|
|
|
|
|
clause_count = 0
|
|
for sent in sentences:
|
|
verbs = [token for token in sent if token.pos_ == 'VERB']
|
|
clause_count += len(verbs)
|
|
|
|
complexity_raw = clause_count / len(sentences) if sentences else 0
|
|
complexity_score = normalize_score(
|
|
value=complexity_raw,
|
|
metric_type='clarity',
|
|
optimal_depth=2.0,
|
|
min_threshold=0.60,
|
|
target_threshold=0.75
|
|
)
|
|
|
|
|
|
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
|
total_words = len([token for token in doc if token.is_alpha])
|
|
density = content_words / total_words if total_words > 0 else 0
|
|
|
|
density_score = normalize_score(
|
|
value=density,
|
|
metric_type='clarity',
|
|
optimal_connections=0.6,
|
|
min_threshold=0.60,
|
|
target_threshold=0.75
|
|
)
|
|
|
|
|
|
weights = {
|
|
'length': 0.3,
|
|
'connectors': 0.3,
|
|
'complexity': 0.2,
|
|
'density': 0.2
|
|
}
|
|
|
|
clarity_score = (
|
|
weights['length'] * length_score +
|
|
weights['connectors'] * connector_score +
|
|
weights['complexity'] * complexity_score +
|
|
weights['density'] * density_score
|
|
)
|
|
|
|
details = {
|
|
'length_score': length_score,
|
|
'connector_score': connector_score,
|
|
'complexity_score': complexity_score,
|
|
'density_score': density_score,
|
|
'avg_sentence_length': avg_length,
|
|
'connectors_per_sentence': connectors_per_sentence,
|
|
'density': density
|
|
}
|
|
|
|
|
|
logger.info(f"""
|
|
Scores de Claridad:
|
|
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
|
|
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oraci贸n)
|
|
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cl谩usulas)
|
|
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
|
|
- Score Final: {clarity_score:.2f}
|
|
""")
|
|
|
|
return clarity_score, details
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en analyze_clarity: {str(e)}")
|
|
return 0.0, {}
|
|
|
|
|
|
def analyze_vocabulary_diversity(doc):
|
|
"""An谩lisis mejorado de la diversidad y calidad del vocabulario"""
|
|
try:
|
|
|
|
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
|
|
total_words = len([token for token in doc if token.is_alpha])
|
|
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
|
|
|
|
|
|
academic_words = 0
|
|
narrative_words = 0
|
|
technical_terms = 0
|
|
|
|
|
|
for token in doc:
|
|
if token.is_alpha:
|
|
|
|
if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
|
|
if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
|
|
technical_terms += 1
|
|
|
|
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
|
|
narrative_words += 1
|
|
|
|
|
|
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
|
|
|
|
|
|
weights = {
|
|
'diversity': 0.3,
|
|
'technical': 0.3,
|
|
'narrative': 0.2,
|
|
'complexity': 0.2
|
|
}
|
|
|
|
scores = {
|
|
'diversity': basic_diversity,
|
|
'technical': technical_terms / total_words if total_words > 0 else 0,
|
|
'narrative': narrative_words / total_words if total_words > 0 else 0,
|
|
'complexity': min(1.0, avg_sentence_length / 20)
|
|
}
|
|
|
|
|
|
final_score = sum(weights[key] * scores[key] for key in weights)
|
|
|
|
|
|
details = {
|
|
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
|
|
'scores': scores
|
|
}
|
|
|
|
return final_score, details
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
|
|
return 0.0, {}
|
|
|
|
def analyze_cohesion(doc):
|
|
"""Analiza la cohesi贸n textual"""
|
|
try:
|
|
sentences = list(doc.sents)
|
|
if len(sentences) < 2:
|
|
logger.warning("Texto demasiado corto para an谩lisis de cohesi贸n")
|
|
return 0.0
|
|
|
|
|
|
lexical_connections = 0
|
|
total_possible_connections = 0
|
|
|
|
for i in range(len(sentences)-1):
|
|
|
|
sent1_words = {token.lemma_ for token in sentences[i]
|
|
if token.is_alpha and not token.is_stop}
|
|
sent2_words = {token.lemma_ for token in sentences[i+1]
|
|
if token.is_alpha and not token.is_stop}
|
|
|
|
if sent1_words and sent2_words:
|
|
intersection = len(sent1_words.intersection(sent2_words))
|
|
total_possible = min(len(sent1_words), len(sent2_words))
|
|
|
|
if total_possible > 0:
|
|
lexical_score = intersection / total_possible
|
|
lexical_connections += lexical_score
|
|
total_possible_connections += 1
|
|
|
|
|
|
connector_count = 0
|
|
connector_types = {
|
|
'CCONJ': 1.0,
|
|
'SCONJ': 1.2,
|
|
'ADV': 0.8
|
|
}
|
|
|
|
for token in doc:
|
|
if (token.pos_ in connector_types and
|
|
token.dep_ in ['cc', 'mark', 'advmod'] and
|
|
not token.is_stop):
|
|
connector_count += connector_types[token.pos_]
|
|
|
|
|
|
if total_possible_connections > 0:
|
|
lexical_cohesion = lexical_connections / total_possible_connections
|
|
else:
|
|
lexical_cohesion = 0
|
|
|
|
if len(sentences) > 1:
|
|
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
|
|
else:
|
|
connector_cohesion = 0
|
|
|
|
|
|
weights = {
|
|
'lexical': 0.7,
|
|
'connectors': 0.3
|
|
}
|
|
|
|
cohesion_score = (
|
|
weights['lexical'] * lexical_cohesion +
|
|
weights['connectors'] * connector_cohesion
|
|
)
|
|
|
|
|
|
logger.info(f"""
|
|
An谩lisis de Cohesi贸n:
|
|
- Conexiones l茅xicas encontradas: {lexical_connections}
|
|
- Conexiones posibles: {total_possible_connections}
|
|
- Lexical cohesion score: {lexical_cohesion}
|
|
- Conectores encontrados: {connector_count}
|
|
- Connector cohesion score: {connector_cohesion}
|
|
- Score final: {cohesion_score}
|
|
""")
|
|
|
|
return cohesion_score
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
|
return 0.0
|
|
|
|
def analyze_structure(doc):
|
|
try:
|
|
if len(doc) == 0:
|
|
return 0.0
|
|
|
|
structure_scores = []
|
|
for token in doc:
|
|
if token.dep_ == 'ROOT':
|
|
result = get_dependency_depths(token)
|
|
structure_scores.append(result['final_score'])
|
|
|
|
if not structure_scores:
|
|
return 0.0
|
|
|
|
return min(1.0, sum(structure_scores) / len(structure_scores))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en analyze_structure: {str(e)}")
|
|
return 0.0
|
|
|
|
|
|
|
|
def get_dependency_depths(token, depth=0, analyzed_tokens=None):
|
|
"""
|
|
Analiza la profundidad y calidad de las relaciones de dependencia.
|
|
|
|
Args:
|
|
token: Token a analizar
|
|
depth: Profundidad actual en el 谩rbol
|
|
analyzed_tokens: Set para evitar ciclos en el an谩lisis
|
|
|
|
Returns:
|
|
dict: Informaci贸n detallada sobre las dependencias
|
|
- depths: Lista de profundidades
|
|
- relations: Diccionario con tipos de relaciones encontradas
|
|
- complexity_score: Puntuaci贸n de complejidad
|
|
"""
|
|
if analyzed_tokens is None:
|
|
analyzed_tokens = set()
|
|
|
|
|
|
if token.i in analyzed_tokens:
|
|
return {
|
|
'depths': [],
|
|
'relations': {},
|
|
'complexity_score': 0
|
|
}
|
|
|
|
analyzed_tokens.add(token.i)
|
|
|
|
|
|
dependency_weights = {
|
|
|
|
'nsubj': 1.2,
|
|
'obj': 1.1,
|
|
'iobj': 1.1,
|
|
'ROOT': 1.3,
|
|
|
|
|
|
'amod': 0.8,
|
|
'advmod': 0.8,
|
|
'nmod': 0.9,
|
|
|
|
|
|
'csubj': 1.4,
|
|
'ccomp': 1.3,
|
|
'xcomp': 1.2,
|
|
'advcl': 1.2,
|
|
|
|
|
|
'conj': 1.1,
|
|
'cc': 0.7,
|
|
'mark': 0.8,
|
|
|
|
|
|
'det': 0.5,
|
|
'case': 0.5,
|
|
'punct': 0.1
|
|
}
|
|
|
|
|
|
current_result = {
|
|
'depths': [depth],
|
|
'relations': {token.dep_: 1},
|
|
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
|
|
}
|
|
|
|
|
|
for child in token.children:
|
|
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
|
|
|
|
|
|
current_result['depths'].extend(child_result['depths'])
|
|
|
|
|
|
for rel, count in child_result['relations'].items():
|
|
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
|
|
|
|
|
|
current_result['complexity_score'] += child_result['complexity_score']
|
|
|
|
|
|
current_result['max_depth'] = max(current_result['depths'])
|
|
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
|
|
current_result['relation_diversity'] = len(current_result['relations'])
|
|
|
|
|
|
structure_bonus = 0
|
|
|
|
|
|
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
|
|
structure_bonus += 0.3
|
|
|
|
|
|
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
|
|
structure_bonus += 0.2
|
|
|
|
|
|
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
|
|
structure_bonus += 0.2
|
|
|
|
current_result['final_score'] = (
|
|
current_result['complexity_score'] * (1 + structure_bonus)
|
|
)
|
|
|
|
return current_result
|
|
|
|
def normalize_score(value, metric_type,
|
|
min_threshold=0.0, target_threshold=1.0,
|
|
range_factor=2.0, optimal_length=None,
|
|
optimal_connections=None, optimal_depth=None):
|
|
"""
|
|
Normaliza un valor considerando umbrales espec铆ficos por tipo de m茅trica.
|
|
|
|
Args:
|
|
value: Valor a normalizar
|
|
metric_type: Tipo de m茅trica ('vocabulary', 'structure', 'cohesion', 'clarity')
|
|
min_threshold: Valor m铆nimo aceptable
|
|
target_threshold: Valor objetivo
|
|
range_factor: Factor para ajustar el rango
|
|
optimal_length: Longitud 贸ptima (opcional)
|
|
optimal_connections: N煤mero 贸ptimo de conexiones (opcional)
|
|
optimal_depth: Profundidad 贸ptima de estructura (opcional)
|
|
|
|
Returns:
|
|
float: Valor normalizado entre 0 y 1
|
|
"""
|
|
try:
|
|
|
|
METRIC_THRESHOLDS = {
|
|
'vocabulary': {
|
|
'min': 0.60,
|
|
'target': 0.75,
|
|
'range_factor': 1.5
|
|
},
|
|
'structure': {
|
|
'min': 0.65,
|
|
'target': 0.80,
|
|
'range_factor': 1.8
|
|
},
|
|
'cohesion': {
|
|
'min': 0.55,
|
|
'target': 0.70,
|
|
'range_factor': 1.6
|
|
},
|
|
'clarity': {
|
|
'min': 0.60,
|
|
'target': 0.75,
|
|
'range_factor': 1.7
|
|
}
|
|
}
|
|
|
|
|
|
if value < 0:
|
|
logger.warning(f"Valor negativo recibido: {value}")
|
|
return 0.0
|
|
|
|
|
|
if value == 0:
|
|
logger.warning("Valor cero recibido")
|
|
return 0.0
|
|
|
|
|
|
thresholds = METRIC_THRESHOLDS.get(metric_type, {
|
|
'min': min_threshold,
|
|
'target': target_threshold,
|
|
'range_factor': range_factor
|
|
})
|
|
|
|
|
|
if optimal_depth is not None:
|
|
reference = optimal_depth
|
|
elif optimal_connections is not None:
|
|
reference = optimal_connections
|
|
elif optimal_length is not None:
|
|
reference = optimal_length
|
|
else:
|
|
reference = thresholds['target']
|
|
|
|
|
|
if reference <= 0:
|
|
logger.warning(f"Valor de referencia inv谩lido: {reference}")
|
|
return 0.0
|
|
|
|
|
|
if value < thresholds['min']:
|
|
|
|
score = (value / thresholds['min']) * 0.5
|
|
elif value < thresholds['target']:
|
|
|
|
range_size = thresholds['target'] - thresholds['min']
|
|
progress = (value - thresholds['min']) / range_size
|
|
score = 0.5 + (progress * 0.5)
|
|
else:
|
|
|
|
score = 1.0
|
|
|
|
|
|
if value > (thresholds['target'] * thresholds['range_factor']):
|
|
excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor'])
|
|
score = max(0.7, 1.0 - excess)
|
|
|
|
|
|
return max(0.0, min(1.0, score))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en normalize_score: {str(e)}")
|
|
return 0.0
|
|
|
|
|
|
|
|
def generate_sentence_graphs(doc):
|
|
"""Genera visualizaciones de estructura de oraciones"""
|
|
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
|
plt.close()
|
|
return fig
|
|
|
|
def generate_word_connections(doc):
|
|
"""Genera red de conexiones de palabras"""
|
|
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
|
plt.close()
|
|
return fig
|
|
|
|
def generate_connection_paths(doc):
|
|
"""Genera patrones de conexi贸n"""
|
|
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
|
plt.close()
|
|
return fig
|
|
|
|
def create_vocabulary_network(doc):
|
|
"""
|
|
Genera el grafo de red de vocabulario.
|
|
"""
|
|
G = nx.Graph()
|
|
|
|
|
|
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
|
|
word_freq = Counter(words)
|
|
|
|
|
|
for word, freq in word_freq.items():
|
|
G.add_node(word, size=freq)
|
|
|
|
|
|
window_size = 5
|
|
for i in range(len(words) - window_size):
|
|
window = words[i:i+window_size]
|
|
for w1, w2 in combinations(set(window), 2):
|
|
if G.has_edge(w1, w2):
|
|
G[w1][w2]['weight'] += 1
|
|
else:
|
|
G.add_edge(w1, w2, weight=1)
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, 8))
|
|
pos = nx.spring_layout(G)
|
|
|
|
|
|
nx.draw_networkx_nodes(G, pos,
|
|
node_size=[G.nodes[node]['size']*100 for node in G.nodes],
|
|
node_color='lightblue',
|
|
alpha=0.7)
|
|
|
|
|
|
nx.draw_networkx_edges(G, pos,
|
|
width=[G[u][v]['weight']*0.5 for u,v in G.edges],
|
|
alpha=0.5)
|
|
|
|
|
|
nx.draw_networkx_labels(G, pos)
|
|
|
|
plt.title("Red de Vocabulario")
|
|
plt.axis('off')
|
|
return fig
|
|
|
|
def create_syntax_complexity_graph(doc):
|
|
"""
|
|
Genera el diagrama de arco de complejidad sint谩ctica.
|
|
Muestra la estructura de dependencias con colores basados en la complejidad.
|
|
"""
|
|
try:
|
|
|
|
sentences = list(doc.sents)
|
|
if not sentences:
|
|
return None
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
|
|
|
|
|
|
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
|
|
|
|
y_offset = 0
|
|
max_x = 0
|
|
|
|
for sent in sentences:
|
|
words = [token.text for token in sent]
|
|
x_positions = range(len(words))
|
|
max_x = max(max_x, len(words))
|
|
|
|
|
|
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
|
|
plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
|
|
|
|
|
|
for i, word in enumerate(words):
|
|
plt.annotate(word, (i, y_offset), xytext=(0, -10),
|
|
textcoords='offset points', ha='center')
|
|
|
|
|
|
for token in sent:
|
|
if token.dep_ != "ROOT":
|
|
|
|
depth = 0
|
|
current = token
|
|
while current.head != current:
|
|
depth += 1
|
|
current = current.head
|
|
|
|
|
|
start = token.i - sent[0].i
|
|
end = token.head.i - sent[0].i
|
|
|
|
|
|
height = 0.5 * abs(end - start)
|
|
|
|
|
|
color = depth_colors[min(depth, len(depth_colors)-1)]
|
|
|
|
|
|
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
|
|
width=abs(end - start),
|
|
height=height,
|
|
angle=0,
|
|
theta1=0,
|
|
theta2=180,
|
|
color=color,
|
|
alpha=0.6)
|
|
ax.add_patch(arc)
|
|
|
|
y_offset -= 2
|
|
|
|
|
|
plt.xlim(-1, max_x)
|
|
plt.ylim(y_offset - 1, 1)
|
|
plt.axis('off')
|
|
plt.title("Complejidad Sint谩ctica")
|
|
|
|
return fig
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
|
|
return None
|
|
|
|
|
|
def create_cohesion_heatmap(doc):
|
|
"""Genera un mapa de calor que muestra la cohesi贸n entre p谩rrafos/oraciones."""
|
|
try:
|
|
sentences = list(doc.sents)
|
|
n_sentences = len(sentences)
|
|
|
|
if n_sentences < 2:
|
|
return None
|
|
|
|
similarity_matrix = np.zeros((n_sentences, n_sentences))
|
|
|
|
for i in range(n_sentences):
|
|
for j in range(n_sentences):
|
|
sent1_lemmas = {token.lemma_ for token in sentences[i]
|
|
if token.is_alpha and not token.is_stop}
|
|
sent2_lemmas = {token.lemma_ for token in sentences[j]
|
|
if token.is_alpha and not token.is_stop}
|
|
|
|
if sent1_lemmas and sent2_lemmas:
|
|
intersection = len(sent1_lemmas & sent2_lemmas)
|
|
union = len(sent1_lemmas | sent2_lemmas)
|
|
similarity_matrix[i, j] = intersection / union if union > 0 else 0
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 8))
|
|
|
|
sns.heatmap(similarity_matrix,
|
|
cmap='YlOrRd',
|
|
square=True,
|
|
xticklabels=False,
|
|
yticklabels=False,
|
|
cbar_kws={'label': 'Cohesi贸n'},
|
|
ax=ax)
|
|
|
|
plt.title("Mapa de Cohesi贸n Textual")
|
|
plt.xlabel("Oraciones")
|
|
plt.ylabel("Oraciones")
|
|
|
|
plt.tight_layout()
|
|
return fig
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
|
|
return None
|
|
|