Upload 4 files
Browse files
modules/studentact/claude_recommendations.py
CHANGED
@@ -29,6 +29,11 @@ TEXT_TYPES = {
|
|
29 |
'academic_article': 'article académique',
|
30 |
'university_work': 'travail universitaire',
|
31 |
'general_communication': 'communication générale'
|
|
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
}
|
34 |
|
@@ -102,6 +107,51 @@ def generate_claude_recommendations(text, metrics, text_type, lang_code):
|
|
102 |
4. Una sugerencia sobre qué herramienta de AIdeaText usar (Análisis Morfosintáctico, Análisis Semántico o Análisis del Discurso)
|
103 |
|
104 |
Tu respuesta debe ser concisa y no exceder los 300 palabras."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
else:
|
106 |
# Default to English
|
107 |
system_prompt = """You are an assistant specialized in analyzing academic texts and written communication.
|
@@ -152,6 +202,8 @@ def generate_claude_recommendations(text, metrics, text_type, lang_code):
|
|
152 |
logger.error(f"Error generating recommendations with Claude: {str(e)}")
|
153 |
return get_fallback_recommendations(lang_code)
|
154 |
|
|
|
|
|
155 |
def get_fallback_recommendations(lang_code):
|
156 |
"""
|
157 |
Return fallback recommendations if Claude API fails
|
@@ -160,16 +212,45 @@ def get_fallback_recommendations(lang_code):
|
|
160 |
return """
|
161 |
**Análisis General**
|
162 |
Tu texto presenta una estructura básica adecuada, pero hay áreas que pueden mejorarse para mayor claridad y cohesión.
|
163 |
-
|
164 |
**Recomendaciones**:
|
165 |
- Intenta variar tu vocabulario para evitar repeticiones innecesarias
|
166 |
- Considera revisar la longitud de tus oraciones para mantener un mejor ritmo
|
167 |
- Asegúrate de establecer conexiones claras entre las ideas principales
|
168 |
- Revisa la consistencia en el uso de tiempos verbales
|
169 |
-
|
170 |
**Herramienta recomendada**:
|
171 |
Te sugerimos utilizar el Análisis Morfosintáctico para identificar patrones en tu estructura de oraciones.
|
172 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
else:
|
174 |
return """
|
175 |
**General Analysis**
|
@@ -187,7 +268,7 @@ def get_fallback_recommendations(lang_code):
|
|
187 |
|
188 |
|
189 |
#######################################
|
190 |
-
|
191 |
def store_recommendations(username, text, metrics, text_type, recommendations):
|
192 |
"""
|
193 |
Store the recommendations in the database
|
|
|
29 |
'academic_article': 'article académique',
|
30 |
'university_work': 'travail universitaire',
|
31 |
'general_communication': 'communication générale'
|
32 |
+
},
|
33 |
+
'pt': {
|
34 |
+
'academic_article': 'artigo acadêmico',
|
35 |
+
'university_work': 'trabalho universitário',
|
36 |
+
'general_communication': 'comunicação geral'
|
37 |
}
|
38 |
}
|
39 |
|
|
|
107 |
4. Una sugerencia sobre qué herramienta de AIdeaText usar (Análisis Morfosintáctico, Análisis Semántico o Análisis del Discurso)
|
108 |
|
109 |
Tu respuesta debe ser concisa y no exceder los 300 palabras."""
|
110 |
+
|
111 |
+
elif lang_code == 'fr':
|
112 |
+
system_prompt = """Vous êtes un assistant spécialisé dans l'analyse de textes académiques et de communication écrite.
|
113 |
+
Votre tâche est d'analyser le texte de l'utilisateur et de fournir des recommandations personnalisées.
|
114 |
+
Utilisez un ton constructif et spécifique. Soyez clair et direct dans vos suggestions.
|
115 |
+
"""
|
116 |
+
user_prompt = f"""Veuillez analyser ce texte de type '{formatted_metrics['text_type']}'
|
117 |
+
et fournir des recommandations personnalisées pour l'améliorer.
|
118 |
+
|
119 |
+
MÉTRIQUES D'ANALYSE:
|
120 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
121 |
+
|
122 |
+
TEXTE À ANALYSER:
|
123 |
+
{text[:2000]}
|
124 |
+
|
125 |
+
Fournissez votre analyse avec le format suivant:
|
126 |
+
1. Un résumé bref (2-3 phrases) de l'analyse générale
|
127 |
+
2. 3-4 recommandations spécifiques et réalisables (chacune de 1-2 phrases)
|
128 |
+
3. Un exemple concret d'amélioration tiré du texte même de l'utilisateur
|
129 |
+
4. Une suggestion sur quel outil AIdeaText utiliser (Analyse Morphosyntaxique, Analyse Sémantique ou Analyse du Discours)
|
130 |
+
|
131 |
+
Votre réponse doit être concise et ne pas dépasser 300 mots."""
|
132 |
+
|
133 |
+
elif lang_code == 'pt':
|
134 |
+
system_prompt = """Você é um assistente especializado na análise de textos acadêmicos e comunicação escrita.
|
135 |
+
Sua tarefa é analisar o texto do usuário e fornecer recomendações personalizadas.
|
136 |
+
Use um tom construtivo e específico. Seja claro e direto com suas sugestões.
|
137 |
+
"""
|
138 |
+
user_prompt = f"""Por favor, analise este texto do tipo '{formatted_metrics['text_type']}'
|
139 |
+
e forneça recomendações personalizadas para melhorá-lo.
|
140 |
+
|
141 |
+
MÉTRICAS DE ANÁLISE:
|
142 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
143 |
+
|
144 |
+
TEXTO PARA ANALISAR:
|
145 |
+
{text[:2000]}
|
146 |
+
|
147 |
+
Forneça sua análise com o seguinte formato:
|
148 |
+
1. Um breve resumo (2-3 frases) da análise geral
|
149 |
+
2. 3-4 recomendações específicas e acionáveis (cada uma com 1-2 frases)
|
150 |
+
3. Um exemplo concreto de melhoria retirado do próprio texto do usuário
|
151 |
+
4. Uma sugestão sobre qual ferramenta do AIdeaText usar (Análise Morfossintática, Análise Semântica ou Análise do Discurso)
|
152 |
+
|
153 |
+
Sua resposta deve ser concisa e não exceder 300 palavras."""
|
154 |
+
|
155 |
else:
|
156 |
# Default to English
|
157 |
system_prompt = """You are an assistant specialized in analyzing academic texts and written communication.
|
|
|
202 |
logger.error(f"Error generating recommendations with Claude: {str(e)}")
|
203 |
return get_fallback_recommendations(lang_code)
|
204 |
|
205 |
+
##################################################################################
|
206 |
+
##################################################################################
|
207 |
def get_fallback_recommendations(lang_code):
|
208 |
"""
|
209 |
Return fallback recommendations if Claude API fails
|
|
|
212 |
return """
|
213 |
**Análisis General**
|
214 |
Tu texto presenta una estructura básica adecuada, pero hay áreas que pueden mejorarse para mayor claridad y cohesión.
|
|
|
215 |
**Recomendaciones**:
|
216 |
- Intenta variar tu vocabulario para evitar repeticiones innecesarias
|
217 |
- Considera revisar la longitud de tus oraciones para mantener un mejor ritmo
|
218 |
- Asegúrate de establecer conexiones claras entre las ideas principales
|
219 |
- Revisa la consistencia en el uso de tiempos verbales
|
|
|
220 |
**Herramienta recomendada**:
|
221 |
Te sugerimos utilizar el Análisis Morfosintáctico para identificar patrones en tu estructura de oraciones.
|
222 |
"""
|
223 |
+
|
224 |
+
elif lang_code == 'fr':
|
225 |
+
return """
|
226 |
+
**Analyse Générale**
|
227 |
+
Votre texte présente une structure de base adéquate, mais certains aspects pourraient être améliorés pour plus de clarté et de cohésion.
|
228 |
+
|
229 |
+
**Recommandations**:
|
230 |
+
- Essayez de varier votre vocabulaire pour éviter les répétitions inutiles
|
231 |
+
- Envisagez de revoir la longueur de vos phrases pour maintenir un meilleur rythme
|
232 |
+
- Assurez-vous d'établir des liens clairs entre les idées principales
|
233 |
+
- Vérifiez la cohérence dans l'utilisation des temps verbaux
|
234 |
+
|
235 |
+
**Outil recommandé**:
|
236 |
+
Nous vous suggérons d'utiliser l'Analyse Morphosyntaxique pour identifier les modèles dans la structure de vos phrases.
|
237 |
+
"""
|
238 |
+
|
239 |
+
elif lang_code == 'pt':
|
240 |
+
return """
|
241 |
+
**Análise Geral**
|
242 |
+
Seu texto apresenta uma estrutura básica adequada, mas há áreas que podem ser melhoradas para maior clareza e coesão.
|
243 |
+
|
244 |
+
**Recomendações**:
|
245 |
+
- Tente variar seu vocabulário para evitar repetições desnecessárias
|
246 |
+
- Considere revisar o comprimento de suas frases para manter um melhor ritmo
|
247 |
+
- Certifique-se de estabelecer conexões claras entre as ideias principais
|
248 |
+
- Revise a consistência no uso dos tempos verbais
|
249 |
+
|
250 |
+
**Ferramenta recomendada**:
|
251 |
+
Sugerimos utilizar a Análise Morfossintática para identificar padrões na sua estrutura de frases.
|
252 |
+
"""
|
253 |
+
|
254 |
else:
|
255 |
return """
|
256 |
**General Analysis**
|
|
|
268 |
|
269 |
|
270 |
#######################################
|
271 |
+
#######################################
|
272 |
def store_recommendations(username, text, metrics, text_type, recommendations):
|
273 |
"""
|
274 |
Store the recommendations in the database
|
modules/studentact/current_situation_analysis.py
CHANGED
@@ -10,7 +10,6 @@ import numpy as np
|
|
10 |
import matplotlib.patches as patches
|
11 |
import logging
|
12 |
|
13 |
-
from translations.recommendations import RECOMMENDATIONS
|
14 |
|
15 |
# 2. Configuración básica del logging
|
16 |
logging.basicConfig(
|
@@ -622,6 +621,7 @@ def normalize_score(value, metric_type,
|
|
622 |
|
623 |
#########################################################################
|
624 |
#########################################################################
|
|
|
625 |
def generate_recommendations(metrics, text_type, lang_code='es'):
|
626 |
"""
|
627 |
Genera recomendaciones personalizadas basadas en las métricas del texto y el tipo de texto.
|
@@ -629,12 +629,18 @@ def generate_recommendations(metrics, text_type, lang_code='es'):
|
|
629 |
Args:
|
630 |
metrics: Diccionario con las métricas analizadas
|
631 |
text_type: Tipo de texto ('academic_article', 'student_essay', 'general_communication')
|
632 |
-
lang_code: Código del idioma para las recomendaciones (es, en,
|
633 |
|
634 |
Returns:
|
635 |
dict: Recomendaciones organizadas por categoría en el idioma correspondiente
|
636 |
"""
|
637 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
# Obtener umbrales según el tipo de texto
|
639 |
thresholds = TEXT_TYPES[text_type]['thresholds']
|
640 |
|
@@ -701,17 +707,17 @@ def generate_recommendations(metrics, text_type, lang_code='es'):
|
|
701 |
|
702 |
except Exception as e:
|
703 |
logger.error(f"Error en generate_recommendations: {str(e)}")
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
'
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
'
|
714 |
-
'
|
715 |
},
|
716 |
'dimension_names': {
|
717 |
'vocabulary': 'Vocabulary',
|
@@ -728,71 +734,38 @@ def generate_recommendations(metrics, text_type, lang_code='es'):
|
|
728 |
'save_error': "Error saving analysis",
|
729 |
'area_priority': "Priority area"
|
730 |
}
|
731 |
-
}
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
'priority': {
|
740 |
-
'area': 'general',
|
741 |
-
'tips': ["Demandez des commentaires spécifiques à un tuteur ou un professeur"]
|
742 |
-
},
|
743 |
-
'dimension_names': {
|
744 |
-
'vocabulary': 'Vocabulaire',
|
745 |
-
'structure': 'Structure',
|
746 |
-
'cohesion': 'Cohésion',
|
747 |
-
'clarity': 'Clarté',
|
748 |
-
'general': 'Général'
|
749 |
-
},
|
750 |
-
'ui_text': {
|
751 |
-
'priority_intro': "C'est là que vous devriez concentrer vos efforts.",
|
752 |
-
'detailed_recommendations': "Recommandations détaillées",
|
753 |
-
'save_button': "Enregistrer l'analyse",
|
754 |
-
'save_success': "Analyse enregistrée avec succès",
|
755 |
-
'save_error': "Erreur lors de l'enregistrement de l'analyse",
|
756 |
-
'area_priority': "Domaine prioritaire"
|
757 |
-
}
|
758 |
-
}
|
759 |
-
elif lang_code == 'pt':
|
760 |
-
return {
|
761 |
-
'vocabulary': ["Tente enriquecer seu vocabulário"],
|
762 |
-
'structure': ["Trabalhe na estrutura de suas frases"],
|
763 |
-
'cohesion': ["Melhore a conexão entre suas ideias"],
|
764 |
-
'clarity': ["Tente expressar suas ideias com mais clareza"],
|
765 |
-
'specific': ["Adapte seu texto de acordo com seu propósito"],
|
766 |
-
'priority': {
|
767 |
-
'area': 'general',
|
768 |
-
'tips': ["Busque feedback específico de um tutor ou professor"]
|
769 |
},
|
770 |
'dimension_names': {
|
771 |
-
'vocabulary': '
|
772 |
-
'structure': '
|
773 |
-
'cohesion': '
|
774 |
-
'clarity': '
|
775 |
-
'general': '
|
776 |
},
|
777 |
'ui_text': {
|
778 |
-
'priority_intro': "
|
779 |
-
'detailed_recommendations': "
|
780 |
-
'save_button': "
|
781 |
-
'save_success': "
|
782 |
-
'save_error': "
|
783 |
-
'area_priority': "
|
784 |
}
|
785 |
-
}
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
'priority': {
|
794 |
-
'area': 'general',
|
795 |
-
'tips': ["Busca retroalimentación específica de un tutor o profesor"]
|
796 |
},
|
797 |
'dimension_names': {
|
798 |
'vocabulary': 'Vocabulario',
|
@@ -810,6 +783,30 @@ def generate_recommendations(metrics, text_type, lang_code='es'):
|
|
810 |
'area_priority': "Área prioritaria"
|
811 |
}
|
812 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
813 |
|
814 |
|
815 |
#########################################################################
|
@@ -822,6 +819,7 @@ def generate_sentence_graphs(doc):
|
|
822 |
plt.close()
|
823 |
return fig
|
824 |
|
|
|
825 |
def generate_word_connections(doc):
|
826 |
"""Genera red de conexiones de palabras"""
|
827 |
fig, ax = plt.subplots(figsize=(10, 6))
|
@@ -829,6 +827,7 @@ def generate_word_connections(doc):
|
|
829 |
plt.close()
|
830 |
return fig
|
831 |
|
|
|
832 |
def generate_connection_paths(doc):
|
833 |
"""Genera patrones de conexión"""
|
834 |
fig, ax = plt.subplots(figsize=(10, 6))
|
@@ -836,6 +835,7 @@ def generate_connection_paths(doc):
|
|
836 |
plt.close()
|
837 |
return fig
|
838 |
|
|
|
839 |
def create_vocabulary_network(doc):
|
840 |
"""
|
841 |
Genera el grafo de red de vocabulario.
|
@@ -882,6 +882,7 @@ def create_vocabulary_network(doc):
|
|
882 |
plt.axis('off')
|
883 |
return fig
|
884 |
|
|
|
885 |
def create_syntax_complexity_graph(doc):
|
886 |
"""
|
887 |
Genera el diagrama de arco de complejidad sintáctica.
|
@@ -961,7 +962,7 @@ def create_syntax_complexity_graph(doc):
|
|
961 |
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
|
962 |
return None
|
963 |
|
964 |
-
|
965 |
def create_cohesion_heatmap(doc):
|
966 |
"""Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones."""
|
967 |
try:
|
@@ -1005,4 +1006,4 @@ def create_cohesion_heatmap(doc):
|
|
1005 |
|
1006 |
except Exception as e:
|
1007 |
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
|
1008 |
-
return None
|
|
|
10 |
import matplotlib.patches as patches
|
11 |
import logging
|
12 |
|
|
|
13 |
|
14 |
# 2. Configuración básica del logging
|
15 |
logging.basicConfig(
|
|
|
621 |
|
622 |
#########################################################################
|
623 |
#########################################################################
|
624 |
+
|
625 |
def generate_recommendations(metrics, text_type, lang_code='es'):
|
626 |
"""
|
627 |
Genera recomendaciones personalizadas basadas en las métricas del texto y el tipo de texto.
|
|
|
629 |
Args:
|
630 |
metrics: Diccionario con las métricas analizadas
|
631 |
text_type: Tipo de texto ('academic_article', 'student_essay', 'general_communication')
|
632 |
+
lang_code: Código del idioma para las recomendaciones (es, en, uk)
|
633 |
|
634 |
Returns:
|
635 |
dict: Recomendaciones organizadas por categoría en el idioma correspondiente
|
636 |
"""
|
637 |
try:
|
638 |
+
# Añadir debug log para verificar el código de idioma recibido
|
639 |
+
logger.info(f"generate_recommendations llamado con idioma: {lang_code}")
|
640 |
+
|
641 |
+
# Comprobar que importamos RECOMMENDATIONS correctamente
|
642 |
+
logger.info(f"Idiomas disponibles en RECOMMENDATIONS: {list(RECOMMENDATIONS.keys())}")
|
643 |
+
|
644 |
# Obtener umbrales según el tipo de texto
|
645 |
thresholds = TEXT_TYPES[text_type]['thresholds']
|
646 |
|
|
|
707 |
|
708 |
except Exception as e:
|
709 |
logger.error(f"Error en generate_recommendations: {str(e)}")
|
710 |
+
|
711 |
+
# Utilizar un enfoque basado en el idioma actual en lugar de casos codificados
|
712 |
+
# Esto permite manejar ucraniano y cualquier otro idioma futuro
|
713 |
+
fallback_translations = {
|
714 |
+
'en': {
|
715 |
+
'basic_recommendations': {
|
716 |
+
'vocabulary': ["Try enriching your vocabulary"],
|
717 |
+
'structure': ["Work on the structure of your sentences"],
|
718 |
+
'cohesion': ["Improve the connection between your ideas"],
|
719 |
+
'clarity': ["Try to express your ideas more clearly"],
|
720 |
+
'specific': ["Adapt your text according to its purpose"],
|
721 |
},
|
722 |
'dimension_names': {
|
723 |
'vocabulary': 'Vocabulary',
|
|
|
734 |
'save_error': "Error saving analysis",
|
735 |
'area_priority': "Priority area"
|
736 |
}
|
737 |
+
},
|
738 |
+
'uk': {
|
739 |
+
'basic_recommendations': {
|
740 |
+
'vocabulary': ["Розширте свій словниковий запас"],
|
741 |
+
'structure': ["Покращіть структуру ваших речень"],
|
742 |
+
'cohesion': ["Покращіть зв'язок між вашими ідеями"],
|
743 |
+
'clarity': ["Висловлюйте свої ідеї ясніше"],
|
744 |
+
'specific': ["Адаптуйте свій текст відповідно до його мети"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
745 |
},
|
746 |
'dimension_names': {
|
747 |
+
'vocabulary': 'Словниковий запас',
|
748 |
+
'structure': 'Структура',
|
749 |
+
'cohesion': 'Зв\'язність',
|
750 |
+
'clarity': 'Ясність',
|
751 |
+
'general': 'Загальне'
|
752 |
},
|
753 |
'ui_text': {
|
754 |
+
'priority_intro': "Це область, де ви повинні зосередити свої зусилля.",
|
755 |
+
'detailed_recommendations': "Детальні рекомендації",
|
756 |
+
'save_button': "Зберегти аналіз",
|
757 |
+
'save_success': "Аналіз успішно збережено",
|
758 |
+
'save_error': "Помилка при збереженні аналізу",
|
759 |
+
'area_priority': "Пріоритетна область"
|
760 |
}
|
761 |
+
},
|
762 |
+
'es': {
|
763 |
+
'basic_recommendations': {
|
764 |
+
'vocabulary': ["Intenta enriquecer tu vocabulario"],
|
765 |
+
'structure': ["Trabaja en la estructura de tus oraciones"],
|
766 |
+
'cohesion': ["Mejora la conexión entre tus ideas"],
|
767 |
+
'clarity': ["Busca expresar tus ideas con mayor claridad"],
|
768 |
+
'specific': ["Adapta tu texto según su propósito"],
|
|
|
|
|
|
|
769 |
},
|
770 |
'dimension_names': {
|
771 |
'vocabulary': 'Vocabulario',
|
|
|
783 |
'area_priority': "Área prioritaria"
|
784 |
}
|
785 |
}
|
786 |
+
}
|
787 |
+
|
788 |
+
# Usar el idioma actual si está disponible, o inglés, o español como última opción
|
789 |
+
current_lang = fallback_translations.get(lang_code,
|
790 |
+
fallback_translations.get('en',
|
791 |
+
fallback_translations['es']))
|
792 |
+
|
793 |
+
basic_recommendations = current_lang['basic_recommendations']
|
794 |
+
|
795 |
+
return {
|
796 |
+
'vocabulary': basic_recommendations['vocabulary'],
|
797 |
+
'structure': basic_recommendations['structure'],
|
798 |
+
'cohesion': basic_recommendations['cohesion'],
|
799 |
+
'clarity': basic_recommendations['clarity'],
|
800 |
+
'specific': basic_recommendations['specific'],
|
801 |
+
'priority': {
|
802 |
+
'area': 'general',
|
803 |
+
'tips': ["Busca retroalimentación específica de un tutor o profesor"]
|
804 |
+
},
|
805 |
+
'dimension_names': current_lang['dimension_names'],
|
806 |
+
'ui_text': current_lang['ui_text']
|
807 |
+
}
|
808 |
+
|
809 |
+
|
810 |
|
811 |
|
812 |
#########################################################################
|
|
|
819 |
plt.close()
|
820 |
return fig
|
821 |
|
822 |
+
############################################################################
|
823 |
def generate_word_connections(doc):
|
824 |
"""Genera red de conexiones de palabras"""
|
825 |
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
827 |
plt.close()
|
828 |
return fig
|
829 |
|
830 |
+
############################################################################
|
831 |
def generate_connection_paths(doc):
|
832 |
"""Genera patrones de conexión"""
|
833 |
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
835 |
plt.close()
|
836 |
return fig
|
837 |
|
838 |
+
############################################################################
|
839 |
def create_vocabulary_network(doc):
|
840 |
"""
|
841 |
Genera el grafo de red de vocabulario.
|
|
|
882 |
plt.axis('off')
|
883 |
return fig
|
884 |
|
885 |
+
############################################################################
|
886 |
def create_syntax_complexity_graph(doc):
|
887 |
"""
|
888 |
Genera el diagrama de arco de complejidad sintáctica.
|
|
|
962 |
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
|
963 |
return None
|
964 |
|
965 |
+
############################################################################
|
966 |
def create_cohesion_heatmap(doc):
|
967 |
"""Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones."""
|
968 |
try:
|
|
|
1006 |
|
1007 |
except Exception as e:
|
1008 |
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
|
1009 |
+
return None
|
modules/studentact/current_situation_interface.py
CHANGED
@@ -16,7 +16,9 @@ try:
|
|
16 |
except ImportError:
|
17 |
# Si no existe el módulo, definimos una función placeholder
|
18 |
def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
|
19 |
-
|
|
|
|
|
20 |
|
21 |
from .current_situation_analysis import (
|
22 |
analyze_text_dimensions,
|
@@ -42,11 +44,10 @@ plt.rcParams['axes.spines.right'] = False
|
|
42 |
|
43 |
logger = logging.getLogger(__name__)
|
44 |
|
45 |
-
|
46 |
-
# Definición global de los tipos de texto y sus umbrales
|
47 |
TEXT_TYPES = {
|
48 |
'academic_article': {
|
49 |
-
|
50 |
'thresholds': {
|
51 |
'vocabulary': {'min': 0.70, 'target': 0.85},
|
52 |
'structure': {'min': 0.75, 'target': 0.90},
|
@@ -55,7 +56,6 @@ TEXT_TYPES = {
|
|
55 |
}
|
56 |
},
|
57 |
'student_essay': {
|
58 |
-
'name': 'Trabajo Universitario',
|
59 |
'thresholds': {
|
60 |
'vocabulary': {'min': 0.60, 'target': 0.75},
|
61 |
'structure': {'min': 0.65, 'target': 0.80},
|
@@ -64,7 +64,6 @@ TEXT_TYPES = {
|
|
64 |
}
|
65 |
},
|
66 |
'general_communication': {
|
67 |
-
'name': 'Comunicación General',
|
68 |
'thresholds': {
|
69 |
'vocabulary': {'min': 0.50, 'target': 0.65},
|
70 |
'structure': {'min': 0.55, 'target': 0.70},
|
@@ -73,16 +72,21 @@ TEXT_TYPES = {
|
|
73 |
}
|
74 |
}
|
75 |
}
|
76 |
-
####################################
|
77 |
|
|
|
|
|
78 |
def display_current_situation_interface(lang_code, nlp_models, t):
|
79 |
"""
|
80 |
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
81 |
"""
|
|
|
|
|
|
|
|
|
82 |
# Inicializar estados si no existen
|
83 |
if 'text_input' not in st.session_state:
|
84 |
st.session_state.text_input = ""
|
85 |
-
if 'text_area' not in st.session_state:
|
86 |
st.session_state.text_area = ""
|
87 |
if 'show_results' not in st.session_state:
|
88 |
st.session_state.show_results = False
|
@@ -97,30 +101,64 @@ def display_current_situation_interface(lang_code, nlp_models, t):
|
|
97 |
# Container principal con dos columnas
|
98 |
with st.container():
|
99 |
input_col, results_col = st.columns([1,2])
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
try:
|
123 |
-
with st.spinner(t.get('processing', "Analizando...")):
|
124 |
doc = nlp_models[lang_code](text_input)
|
125 |
metrics = analyze_text_dimensions(doc)
|
126 |
|
@@ -140,33 +178,50 @@ def display_current_situation_interface(lang_code, nlp_models, t):
|
|
140 |
|
141 |
except Exception as e:
|
142 |
logger.error(f"Error en análisis: {str(e)}")
|
143 |
-
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
144 |
|
145 |
# Mostrar resultados en la columna derecha
|
146 |
with results_col:
|
147 |
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
148 |
-
# Primero los radio buttons para tipo de texto
|
149 |
-
st.markdown("### Tipo de texto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
text_type = st.radio(
|
151 |
-
label="Tipo de texto",
|
152 |
options=list(TEXT_TYPES.keys()),
|
153 |
-
format_func=lambda x:
|
154 |
horizontal=True,
|
155 |
key="text_type_radio",
|
156 |
label_visibility="collapsed",
|
157 |
-
help="Selecciona el tipo de texto para ajustar los criterios de evaluación"
|
158 |
)
|
159 |
|
160 |
st.session_state.current_text_type = text_type
|
161 |
|
162 |
-
# Crear subtabs
|
163 |
-
|
|
|
|
|
|
|
164 |
|
165 |
# Mostrar resultados en el primer subtab
|
166 |
with subtab1:
|
167 |
display_diagnosis(
|
168 |
metrics=st.session_state.current_metrics,
|
169 |
-
text_type=text_type
|
|
|
|
|
170 |
)
|
171 |
|
172 |
# Mostrar recomendaciones en el segundo subtab
|
@@ -182,13 +237,59 @@ def display_current_situation_interface(lang_code, nlp_models, t):
|
|
182 |
|
183 |
except Exception as e:
|
184 |
logger.error(f"Error en interfaz principal: {str(e)}")
|
185 |
-
st.error("Ocurrió un error al cargar la interfaz")
|
186 |
|
187 |
-
|
|
|
|
|
188 |
"""
|
189 |
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
190 |
"""
|
191 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
# Usar valor por defecto si no se especifica tipo
|
193 |
text_type = text_type or 'student_essay'
|
194 |
|
@@ -202,52 +303,54 @@ def display_diagnosis(metrics, text_type=None):
|
|
202 |
with metrics_col:
|
203 |
metrics_config = [
|
204 |
{
|
205 |
-
'label':
|
206 |
'key': 'vocabulary',
|
207 |
'value': metrics['vocabulary']['normalized_score'],
|
208 |
-
'help': "Riqueza y variedad del vocabulario",
|
209 |
'thresholds': thresholds['vocabulary']
|
210 |
},
|
211 |
{
|
212 |
-
'label':
|
213 |
'key': 'structure',
|
214 |
'value': metrics['structure']['normalized_score'],
|
215 |
-
'help': "Organización y complejidad de oraciones",
|
216 |
'thresholds': thresholds['structure']
|
217 |
},
|
218 |
{
|
219 |
-
'label':
|
220 |
'key': 'cohesion',
|
221 |
'value': metrics['cohesion']['normalized_score'],
|
222 |
-
'help': "Conexión y fluidez entre ideas",
|
223 |
'thresholds': thresholds['cohesion']
|
224 |
},
|
225 |
{
|
226 |
-
'label':
|
227 |
'key': 'clarity',
|
228 |
'value': metrics['clarity']['normalized_score'],
|
229 |
-
'help': "Facilidad de comprensión del texto",
|
230 |
'thresholds': thresholds['clarity']
|
231 |
}
|
232 |
]
|
233 |
|
234 |
-
# Mostrar métricas
|
235 |
for metric in metrics_config:
|
236 |
value = metric['value']
|
237 |
if value < metric['thresholds']['min']:
|
238 |
-
status =
|
239 |
color = "inverse"
|
240 |
elif value < metric['thresholds']['target']:
|
241 |
-
status =
|
242 |
color = "off"
|
243 |
else:
|
244 |
-
status =
|
245 |
color = "normal"
|
246 |
|
|
|
|
|
247 |
st.metric(
|
248 |
metric['label'],
|
249 |
f"{value:.2f}",
|
250 |
-
f"{status} (
|
251 |
delta_color=color,
|
252 |
help=metric['help']
|
253 |
)
|
@@ -255,17 +358,29 @@ def display_diagnosis(metrics, text_type=None):
|
|
255 |
|
256 |
# Gráfico radar en la columna derecha
|
257 |
with graph_col:
|
258 |
-
display_radar_chart(metrics_config, thresholds)
|
259 |
|
260 |
except Exception as e:
|
261 |
logger.error(f"Error mostrando resultados: {str(e)}")
|
262 |
-
st.error("Error al mostrar los resultados")
|
263 |
|
264 |
-
|
|
|
|
|
265 |
"""
|
266 |
Muestra el gráfico radar con los resultados.
|
267 |
"""
|
268 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
# Preparar datos para el gráfico
|
270 |
categories = [m['label'] for m in metrics_config]
|
271 |
values_user = [m['value'] for m in metrics_config]
|
@@ -291,14 +406,14 @@ def display_radar_chart(metrics_config, thresholds):
|
|
291 |
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
292 |
ax.set_ylim(0, 1)
|
293 |
|
294 |
-
# Dibujar áreas de umbrales
|
295 |
-
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='
|
296 |
-
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='
|
297 |
ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1)
|
298 |
ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1)
|
299 |
|
300 |
-
# Dibujar valores del usuario
|
301 |
-
ax.plot(angles, values_user, '#3498db', linewidth=2, label='
|
302 |
ax.fill(angles, values_user, '#3498db', alpha=0.2)
|
303 |
|
304 |
# Ajustar leyenda
|
|
|
16 |
except ImportError:
|
17 |
# Si no existe el módulo, definimos una función placeholder
|
18 |
def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
|
19 |
+
# Obtener el mensaje de advertencia traducido si está disponible
|
20 |
+
warning = t.get('module_not_available', "Módulo de recomendaciones personalizadas no disponible. Por favor, contacte al administrador.")
|
21 |
+
st.warning(warning)
|
22 |
|
23 |
from .current_situation_analysis import (
|
24 |
analyze_text_dimensions,
|
|
|
44 |
|
45 |
logger = logging.getLogger(__name__)
|
46 |
|
47 |
+
# Definición de tipos de texto con umbrales
|
|
|
48 |
TEXT_TYPES = {
|
49 |
'academic_article': {
|
50 |
+
# Los nombres se obtendrán de las traducciones
|
51 |
'thresholds': {
|
52 |
'vocabulary': {'min': 0.70, 'target': 0.85},
|
53 |
'structure': {'min': 0.75, 'target': 0.90},
|
|
|
56 |
}
|
57 |
},
|
58 |
'student_essay': {
|
|
|
59 |
'thresholds': {
|
60 |
'vocabulary': {'min': 0.60, 'target': 0.75},
|
61 |
'structure': {'min': 0.65, 'target': 0.80},
|
|
|
64 |
}
|
65 |
},
|
66 |
'general_communication': {
|
|
|
67 |
'thresholds': {
|
68 |
'vocabulary': {'min': 0.50, 'target': 0.65},
|
69 |
'structure': {'min': 0.55, 'target': 0.70},
|
|
|
72 |
}
|
73 |
}
|
74 |
}
|
|
|
75 |
|
76 |
+
####################################################
|
77 |
+
####################################################
|
78 |
def display_current_situation_interface(lang_code, nlp_models, t):
|
79 |
"""
|
80 |
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
81 |
"""
|
82 |
+
# Agregar logs para depuración
|
83 |
+
logger.info(f"Idioma: {lang_code}")
|
84 |
+
logger.info(f"Claves en t: {list(t.keys())}")
|
85 |
+
|
86 |
# Inicializar estados si no existen
|
87 |
if 'text_input' not in st.session_state:
|
88 |
st.session_state.text_input = ""
|
89 |
+
if 'text_area' not in st.session_state:
|
90 |
st.session_state.text_area = ""
|
91 |
if 'show_results' not in st.session_state:
|
92 |
st.session_state.show_results = False
|
|
|
101 |
# Container principal con dos columnas
|
102 |
with st.container():
|
103 |
input_col, results_col = st.columns([1,2])
|
104 |
+
|
105 |
+
###############################################################################################
|
106 |
+
# CSS personalizado para que el formulario ocupe todo el alto disponible
|
107 |
+
st.markdown("""
|
108 |
+
<style>
|
109 |
+
/* Hacer que la columna tenga una altura definida */
|
110 |
+
[data-testid="column"] {
|
111 |
+
min-height: 900px;
|
112 |
+
height: 100vh; /* 100% del alto visible de la ventana */
|
113 |
+
}
|
114 |
+
|
115 |
+
/* Hacer que el formulario ocupe el espacio disponible en la columna */
|
116 |
+
.stForm {
|
117 |
+
height: calc(100% - 40px); /* Ajuste por márgenes y paddings */
|
118 |
+
display: flex;
|
119 |
+
flex-direction: column;
|
120 |
+
}
|
121 |
|
122 |
+
/* Hacer que el área de texto se expanda dentro del formulario */
|
123 |
+
.stForm .stTextArea {
|
124 |
+
flex: 1;
|
125 |
+
display: flex;
|
126 |
+
flex-direction: column;
|
127 |
+
}
|
128 |
|
129 |
+
/* El textarea en sí debe expandirse */
|
130 |
+
.stForm .stTextArea textarea {
|
131 |
+
flex: 1;
|
132 |
+
min-height: 750px !important;
|
133 |
+
}
|
134 |
+
</style>
|
135 |
+
""", unsafe_allow_html=True)
|
136 |
+
|
137 |
+
###############################################################################################
|
138 |
+
with input_col:
|
139 |
+
with st.form(key=f"text_input_form_{lang_code}"):
|
140 |
+
text_input = st.text_area(
|
141 |
+
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
142 |
+
height=800,
|
143 |
+
key=f"text_area_{lang_code}",
|
144 |
+
value=st.session_state.text_input,
|
145 |
+
help=t.get('help', "Este texto será analizado para darte recomendaciones personalizadas")
|
146 |
+
)
|
147 |
+
|
148 |
+
submit_button = st.form_submit_button(
|
149 |
+
t.get('analyze_button', "Analizar mi escritura"),
|
150 |
+
type="primary",
|
151 |
+
use_container_width=True
|
152 |
+
)
|
153 |
+
|
154 |
+
if submit_button:
|
155 |
+
if text_input.strip():
|
156 |
+
st.session_state.text_input = text_input
|
157 |
+
|
158 |
+
#######################################################################
|
159 |
+
# Código para análisis...
|
160 |
try:
|
161 |
+
with st.spinner(t.get('processing', "Analizando...")): # Usando t.get directamente
|
162 |
doc = nlp_models[lang_code](text_input)
|
163 |
metrics = analyze_text_dimensions(doc)
|
164 |
|
|
|
178 |
|
179 |
except Exception as e:
|
180 |
logger.error(f"Error en análisis: {str(e)}")
|
181 |
+
st.error(t.get('analysis_error', "Error al analizar el texto")) # Usando t.get directamente
|
182 |
|
183 |
# Mostrar resultados en la columna derecha
|
184 |
with results_col:
|
185 |
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
186 |
+
# Primero los radio buttons para tipo de texto - usando t.get directamente
|
187 |
+
st.markdown(f"### {t.get('text_type_header', 'Tipo de texto')}")
|
188 |
+
|
189 |
+
# Preparar opciones de tipos de texto con nombres traducidos
|
190 |
+
text_type_options = {}
|
191 |
+
for text_type_key in TEXT_TYPES.keys():
|
192 |
+
# Fallback a nombres genéricos si no hay traducción
|
193 |
+
default_names = {
|
194 |
+
'academic_article': 'Academic Article' if lang_code == 'en' else 'Артикул академічний' if lang_code == 'uk' else 'Artículo Académico',
|
195 |
+
'student_essay': 'Student Essay' if lang_code == 'en' else 'Студентське есе' if lang_code == 'uk' else 'Trabajo Universitario',
|
196 |
+
'general_communication': 'General Communication' if lang_code == 'en' else 'Загальна комунікація' if lang_code == 'uk' else 'Comunicación General'
|
197 |
+
}
|
198 |
+
text_type_options[text_type_key] = default_names.get(text_type_key, text_type_key)
|
199 |
+
|
200 |
text_type = st.radio(
|
201 |
+
label=t.get('text_type_header', "Tipo de texto"), # Usando t.get directamente
|
202 |
options=list(TEXT_TYPES.keys()),
|
203 |
+
format_func=lambda x: text_type_options.get(x, x),
|
204 |
horizontal=True,
|
205 |
key="text_type_radio",
|
206 |
label_visibility="collapsed",
|
207 |
+
help=t.get('text_type_help', "Selecciona el tipo de texto para ajustar los criterios de evaluación") # Usando t.get directamente
|
208 |
)
|
209 |
|
210 |
st.session_state.current_text_type = text_type
|
211 |
|
212 |
+
# Crear subtabs con nombres traducidos
|
213 |
+
diagnosis_tab = "Diagnosis" if lang_code == 'en' else "Діагностика" if lang_code == 'uk' else "Diagnóstico"
|
214 |
+
recommendations_tab = "Recommendations" if lang_code == 'en' else "Рекомендації" if lang_code == 'uk' else "Recomendaciones"
|
215 |
+
|
216 |
+
subtab1, subtab2 = st.tabs([diagnosis_tab, recommendations_tab])
|
217 |
|
218 |
# Mostrar resultados en el primer subtab
|
219 |
with subtab1:
|
220 |
display_diagnosis(
|
221 |
metrics=st.session_state.current_metrics,
|
222 |
+
text_type=text_type,
|
223 |
+
lang_code=lang_code,
|
224 |
+
t=t # Pasar t directamente, no current_situation_t
|
225 |
)
|
226 |
|
227 |
# Mostrar recomendaciones en el segundo subtab
|
|
|
237 |
|
238 |
except Exception as e:
|
239 |
logger.error(f"Error en interfaz principal: {str(e)}")
|
240 |
+
st.error(t.get('error_interface', "Ocurrió un error al cargar la interfaz")) # Usando t.get directamente
|
241 |
|
242 |
+
#################################################################
|
243 |
+
#################################################################
|
244 |
+
def display_diagnosis(metrics, text_type=None, lang_code='es', t=None):
|
245 |
"""
|
246 |
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
247 |
"""
|
248 |
try:
|
249 |
+
# Asegurar que tenemos traducciones
|
250 |
+
if t is None:
|
251 |
+
t = {}
|
252 |
+
|
253 |
+
# Traducciones para títulos y etiquetas
|
254 |
+
dimension_labels = {
|
255 |
+
'es': {
|
256 |
+
'title': "Tipo de texto",
|
257 |
+
'vocabulary': "Vocabulario",
|
258 |
+
'structure': "Estructura",
|
259 |
+
'cohesion': "Cohesión",
|
260 |
+
'clarity': "Claridad",
|
261 |
+
'improvement': "⚠️ Por mejorar",
|
262 |
+
'acceptable': "📈 Aceptable",
|
263 |
+
'optimal': "✅ Óptimo",
|
264 |
+
'target': "Meta: {:.2f}"
|
265 |
+
},
|
266 |
+
'en': {
|
267 |
+
'title': "Text Type",
|
268 |
+
'vocabulary': "Vocabulary",
|
269 |
+
'structure': "Structure",
|
270 |
+
'cohesion': "Cohesion",
|
271 |
+
'clarity': "Clarity",
|
272 |
+
'improvement': "⚠️ Needs improvement",
|
273 |
+
'acceptable': "📈 Acceptable",
|
274 |
+
'optimal': "✅ Optimal",
|
275 |
+
'target': "Target: {:.2f}"
|
276 |
+
},
|
277 |
+
'uk': {
|
278 |
+
'title': "Тип тексту",
|
279 |
+
'vocabulary': "Словниковий запас",
|
280 |
+
'structure': "Структура",
|
281 |
+
'cohesion': "Зв'язність",
|
282 |
+
'clarity': "Ясність",
|
283 |
+
'improvement': "⚠️ Потребує покращення",
|
284 |
+
'acceptable': "📈 Прийнятно",
|
285 |
+
'optimal': "✅ Оптимально",
|
286 |
+
'target': "Ціль: {:.2f}"
|
287 |
+
}
|
288 |
+
}
|
289 |
+
|
290 |
+
# Obtener traducciones para el idioma actual, con fallback a español
|
291 |
+
labels = dimension_labels.get(lang_code, dimension_labels['es'])
|
292 |
+
|
293 |
# Usar valor por defecto si no se especifica tipo
|
294 |
text_type = text_type or 'student_essay'
|
295 |
|
|
|
303 |
with metrics_col:
|
304 |
metrics_config = [
|
305 |
{
|
306 |
+
'label': labels['vocabulary'],
|
307 |
'key': 'vocabulary',
|
308 |
'value': metrics['vocabulary']['normalized_score'],
|
309 |
+
'help': t.get('vocabulary_help', "Riqueza y variedad del vocabulario"),
|
310 |
'thresholds': thresholds['vocabulary']
|
311 |
},
|
312 |
{
|
313 |
+
'label': labels['structure'],
|
314 |
'key': 'structure',
|
315 |
'value': metrics['structure']['normalized_score'],
|
316 |
+
'help': t.get('structure_help', "Organización y complejidad de oraciones"),
|
317 |
'thresholds': thresholds['structure']
|
318 |
},
|
319 |
{
|
320 |
+
'label': labels['cohesion'],
|
321 |
'key': 'cohesion',
|
322 |
'value': metrics['cohesion']['normalized_score'],
|
323 |
+
'help': t.get('cohesion_help', "Conexión y fluidez entre ideas"),
|
324 |
'thresholds': thresholds['cohesion']
|
325 |
},
|
326 |
{
|
327 |
+
'label': labels['clarity'],
|
328 |
'key': 'clarity',
|
329 |
'value': metrics['clarity']['normalized_score'],
|
330 |
+
'help': t.get('clarity_help', "Facilidad de comprensión del texto"),
|
331 |
'thresholds': thresholds['clarity']
|
332 |
}
|
333 |
]
|
334 |
|
335 |
+
# Mostrar métricas con textos traducidos
|
336 |
for metric in metrics_config:
|
337 |
value = metric['value']
|
338 |
if value < metric['thresholds']['min']:
|
339 |
+
status = labels['improvement']
|
340 |
color = "inverse"
|
341 |
elif value < metric['thresholds']['target']:
|
342 |
+
status = labels['acceptable']
|
343 |
color = "off"
|
344 |
else:
|
345 |
+
status = labels['optimal']
|
346 |
color = "normal"
|
347 |
|
348 |
+
target_text = labels['target'].format(metric['thresholds']['target'])
|
349 |
+
|
350 |
st.metric(
|
351 |
metric['label'],
|
352 |
f"{value:.2f}",
|
353 |
+
f"{status} ({target_text})",
|
354 |
delta_color=color,
|
355 |
help=metric['help']
|
356 |
)
|
|
|
358 |
|
359 |
# Gráfico radar en la columna derecha
|
360 |
with graph_col:
|
361 |
+
display_radar_chart(metrics_config, thresholds, lang_code) # Pasar el parámetro lang_code
|
362 |
|
363 |
except Exception as e:
|
364 |
logger.error(f"Error mostrando resultados: {str(e)}")
|
365 |
+
st.error(t.get('error_results', "Error al mostrar los resultados"))
|
366 |
|
367 |
+
##################################################################
|
368 |
+
##################################################################
|
369 |
+
def display_radar_chart(metrics_config, thresholds, lang_code='es'):
|
370 |
"""
|
371 |
Muestra el gráfico radar con los resultados.
|
372 |
"""
|
373 |
try:
|
374 |
+
# Traducción de las etiquetas de leyenda según el idioma
|
375 |
+
legend_translations = {
|
376 |
+
'es': {'min': 'Mínimo', 'target': 'Meta', 'user': 'Tu escritura'},
|
377 |
+
'en': {'min': 'Minimum', 'target': 'Target', 'user': 'Your writing'},
|
378 |
+
'uk': {'min': 'Мінімум', 'target': 'Ціль', 'user': 'Ваш текст'}
|
379 |
+
}
|
380 |
+
|
381 |
+
# Usar español por defecto si el idioma no está soportado
|
382 |
+
translations = legend_translations.get(lang_code, legend_translations['es'])
|
383 |
+
|
384 |
# Preparar datos para el gráfico
|
385 |
categories = [m['label'] for m in metrics_config]
|
386 |
values_user = [m['value'] for m in metrics_config]
|
|
|
406 |
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
407 |
ax.set_ylim(0, 1)
|
408 |
|
409 |
+
# Dibujar áreas de umbrales con etiquetas traducidas
|
410 |
+
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label=translations['min'], alpha=0.5)
|
411 |
+
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label=translations['target'], alpha=0.5)
|
412 |
ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1)
|
413 |
ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1)
|
414 |
|
415 |
+
# Dibujar valores del usuario con etiqueta traducida
|
416 |
+
ax.plot(angles, values_user, '#3498db', linewidth=2, label=translations['user'])
|
417 |
ax.fill(angles, values_user, '#3498db', alpha=0.2)
|
418 |
|
419 |
# Ajustar leyenda
|
modules/studentact/student_activities_v2.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
###modules/studentact/student_activities_v2.py
|
3 |
|
4 |
import streamlit as st
|
@@ -40,15 +40,17 @@ def display_student_activities(username: str, lang_code: str, t: dict):
|
|
40 |
t: Diccionario de traducciones
|
41 |
"""
|
42 |
try:
|
43 |
-
|
|
|
44 |
|
45 |
# Tabs para diferentes tipos de análisis
|
|
|
46 |
tabs = st.tabs([
|
47 |
-
t.get('current_situation_activities', 'Mi Situación Actual'),
|
48 |
-
t.get('morpho_activities', '
|
49 |
-
t.get('semantic_activities', '
|
50 |
-
t.get('discourse_activities', '
|
51 |
-
t.get('chat_activities', '
|
52 |
])
|
53 |
|
54 |
# Tab de Situación Actual
|
@@ -63,7 +65,7 @@ def display_student_activities(username: str, lang_code: str, t: dict):
|
|
63 |
with tabs[2]:
|
64 |
display_semantic_activities(username, t)
|
65 |
|
66 |
-
# Tab de Análisis del Discurso
|
67 |
with tabs[3]:
|
68 |
display_discourse_activities(username, t)
|
69 |
|
@@ -461,14 +463,15 @@ def display_semantic_activities(username: str, t: dict):
|
|
461 |
|
462 |
###################################################################################################
|
463 |
def display_discourse_activities(username: str, t: dict):
|
464 |
-
"""Muestra actividades de análisis del discurso"""
|
465 |
try:
|
466 |
logger.info(f"Recuperando análisis del discurso para {username}")
|
467 |
analyses = get_student_discourse_analysis(username)
|
468 |
|
469 |
if not analyses:
|
470 |
logger.info("No se encontraron análisis del discurso")
|
471 |
-
|
|
|
472 |
return
|
473 |
|
474 |
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
@@ -502,7 +505,8 @@ def display_discourse_activities(username: str, t: dict):
|
|
502 |
|
503 |
except Exception as e:
|
504 |
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
505 |
-
|
|
|
506 |
|
507 |
#################################################################################
|
508 |
def display_chat_activities(username: str, t: dict):
|
@@ -557,6 +561,7 @@ def display_chat_activities(username: str, t: dict):
|
|
557 |
#################################################################################
|
558 |
def display_discourse_comparison(analysis: dict, t: dict):
|
559 |
"""Muestra la comparación de análisis del discurso"""
|
|
|
560 |
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
561 |
|
562 |
col1, col2 = st.columns(2)
|
@@ -568,4 +573,4 @@ def display_discourse_comparison(analysis: dict, t: dict):
|
|
568 |
with col2:
|
569 |
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
570 |
df2 = pd.DataFrame(analysis['key_concepts2'])
|
571 |
-
st.dataframe(df2)
|
|
|
1 |
+
##############
|
2 |
###modules/studentact/student_activities_v2.py
|
3 |
|
4 |
import streamlit as st
|
|
|
40 |
t: Diccionario de traducciones
|
41 |
"""
|
42 |
try:
|
43 |
+
# Cambiado de "Mis Actividades" a "Registro de mis actividades"
|
44 |
+
#st.header(t.get('activities_title', 'Registro de mis actividades'))
|
45 |
|
46 |
# Tabs para diferentes tipos de análisis
|
47 |
+
# Cambiado "Análisis del Discurso" a "Análisis comparado de textos"
|
48 |
tabs = st.tabs([
|
49 |
+
t.get('current_situation_activities', 'Registros de la función: Mi Situación Actual'),
|
50 |
+
t.get('morpho_activities', 'Registros de mis análisis morfosintácticos'),
|
51 |
+
t.get('semantic_activities', 'Registros de mis análisis semánticos'),
|
52 |
+
t.get('discourse_activities', 'Registros de mis análisis comparado de textos'),
|
53 |
+
t.get('chat_activities', 'Registros de mis conversaciones con el tutor virtual')
|
54 |
])
|
55 |
|
56 |
# Tab de Situación Actual
|
|
|
65 |
with tabs[2]:
|
66 |
display_semantic_activities(username, t)
|
67 |
|
68 |
+
# Tab de Análisis del Discurso (mantiene nombre interno pero UI muestra "Análisis comparado de textos")
|
69 |
with tabs[3]:
|
70 |
display_discourse_activities(username, t)
|
71 |
|
|
|
463 |
|
464 |
###################################################################################################
|
465 |
def display_discourse_activities(username: str, t: dict):
|
466 |
+
"""Muestra actividades de análisis del discurso (mostrado como 'Análisis comparado de textos' en la UI)"""
|
467 |
try:
|
468 |
logger.info(f"Recuperando análisis del discurso para {username}")
|
469 |
analyses = get_student_discourse_analysis(username)
|
470 |
|
471 |
if not analyses:
|
472 |
logger.info("No se encontraron análisis del discurso")
|
473 |
+
# Usamos el término "análisis comparado de textos" en la UI
|
474 |
+
st.info(t.get('no_discourse_analyses', 'No hay análisis comparados de textos registrados'))
|
475 |
return
|
476 |
|
477 |
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
|
|
505 |
|
506 |
except Exception as e:
|
507 |
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
508 |
+
# Usamos el término "análisis comparado de textos" en la UI
|
509 |
+
st.error(t.get('error_discourse', 'Error al mostrar análisis comparado de textos'))
|
510 |
|
511 |
#################################################################################
|
512 |
def display_chat_activities(username: str, t: dict):
|
|
|
561 |
#################################################################################
|
562 |
def display_discourse_comparison(analysis: dict, t: dict):
|
563 |
"""Muestra la comparación de análisis del discurso"""
|
564 |
+
# Cambiado para usar "textos comparados" en la UI
|
565 |
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
566 |
|
567 |
col1, col2 = st.columns(2)
|
|
|
573 |
with col2:
|
574 |
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
575 |
df2 = pd.DataFrame(analysis['key_concepts2'])
|
576 |
+
st.dataframe(df2)
|